Upload folder using huggingface_hub
Browse files- app.py +44 -0
- requirements.txt +1 -0
app.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import streamlit as st
|
3 |
+
import requests
|
4 |
+
|
5 |
+
st.title("SuperKart Sales Predictor")
|
6 |
+
|
7 |
+
# Input fields for product and store data
|
8 |
+
Product_Weight = st.number_input("Product Weight", min_value=0.0, value=12.66)
|
9 |
+
Product_Sugar_Content = st.selectbox("Product Sugar Content", ["Low Sugar", "Regular", "No Sugar"])
|
10 |
+
Product_Allocated_Area = st.number_input("Product Allocated Area", min_value=0.0, value=20.0)
|
11 |
+
Product_MRP = st.number_input("Product MRP", min_value=0.0, value=100.0)
|
12 |
+
Store_Size = st.selectbox("Store Size", ["Small", "Medium", "High"])
|
13 |
+
Store_Location_City_Type = st.selectbox("Store Location City Type", ["Urban", "Semi-Urban", "Tier 3"])
|
14 |
+
Store_Type = st.selectbox("Store Type", ["Type 1", "Type 2", "Type 3", "Type 4"])
|
15 |
+
Product_Id_char = st.selectbox("Product ID Prefix", ["FD", "DR", "NC"]) # Example prefixes
|
16 |
+
Store_Age_Years = st.number_input("Store Age (Years)", min_value=0, value=10)
|
17 |
+
Product_Type_Category = st.selectbox("Product Type Category", ["Food", "Drinks", "Non-Consumable"]) # Example categories
|
18 |
+
|
19 |
+
# Prepare data for POST request
|
20 |
+
product_data = {
|
21 |
+
"Product_Weight": Product_Weight,
|
22 |
+
"Product_Sugar_Content": Product_Sugar_Content,
|
23 |
+
"Product_Allocated_Area": Product_Allocated_Area,
|
24 |
+
"Product_MRP": Product_MRP,
|
25 |
+
"Store_Size": Store_Size,
|
26 |
+
"Store_Location_City_Type": Store_Location_City_Type,
|
27 |
+
"Store_Type": Store_Type,
|
28 |
+
"Product_Id_char": Product_Id_char,
|
29 |
+
"Store_Age_Years": Store_Age_Years,
|
30 |
+
"Product_Type_Category": Product_Type_Category
|
31 |
+
}
|
32 |
+
|
33 |
+
# Predict button and API call
|
34 |
+
if st.button("Predict", type='primary'):
|
35 |
+
response = requests.post(
|
36 |
+
"https://DD8943/superkart-regression-app.hf.space/v1/predict",
|
37 |
+
json=product_data
|
38 |
+
)
|
39 |
+
if response.status_code == 200:
|
40 |
+
result = response.json()
|
41 |
+
predicted_sales = result["Sales"]
|
42 |
+
st.write(f"Predicted Product Store Sales Total: ₹{predicted_sales:.2f}")
|
43 |
+
else:
|
44 |
+
st.error("Error in API request")
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
requests==2.32.3
|