import streamlit as st import requests st.title("SuperKart Sales Predictor") # Input fields for product and store data Product_Weight = st.number_input("Product Weight", min_value=0.0, value=12.66) Product_Sugar_Content = st.selectbox("Product Sugar Content", ["Low Sugar", "Regular", "No Sugar"]) Product_Allocated_Area = st.number_input("Product Allocated Area", min_value=0.0, value=20.0) Product_MRP = st.number_input("Product MRP", min_value=0.0, value=100.0) Store_Size = st.selectbox("Store Size", ["Small", "Medium", "High"]) Store_Location_City_Type = st.selectbox("Store Location City Type", ["Urban", "Semi-Urban", "Tier 3"]) Store_Type = st.selectbox("Store Type", ["Type 1", "Type 2", "Type 3", "Type 4"]) Product_Id_char = st.selectbox("Product ID Prefix", ["FD", "DR", "NC"]) # Example prefixes Store_Age_Years = st.number_input("Store Age (Years)", min_value=0, value=10) Product_Type_Category = st.selectbox("Product Type Category", ["Food", "Drinks", "Non-Consumable"]) # Example categories # Prepare data for POST request product_data = { "Product_Weight": Product_Weight, "Product_Sugar_Content": Product_Sugar_Content, "Product_Allocated_Area": Product_Allocated_Area, "Product_MRP": Product_MRP, "Store_Size": Store_Size, "Store_Location_City_Type": Store_Location_City_Type, "Store_Type": Store_Type, "Product_Id_char": Product_Id_char, "Store_Age_Years": Store_Age_Years, "Product_Type_Category": Product_Type_Category } # Predict button and API call if st.button("Predict", type='primary'): response = requests.post( "https://DD8943/superkart-regression-app.hf.space/v1/predict", json=product_data ) if response.status_code == 200: result = response.json() predicted_sales = result["Sales"] st.write(f"Predicted Product Store Sales Total: ₹{predicted_sales:.2f}") else: st.error("Error in API request")