Spaces:
Sleeping
Sleeping
Upload folder using huggingface_hub
Browse files- Dockerfile +13 -0
- app.py +51 -0
- final_model.joblib +3 -0
- requirements.txt +14 -0
Dockerfile
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9-slim
|
2 |
+
|
3 |
+
# Set the working directory inside the container
|
4 |
+
WORKDIR /app
|
5 |
+
|
6 |
+
# Copy all files from the current directory to the container's working directory
|
7 |
+
COPY . .
|
8 |
+
|
9 |
+
# Install dependencies from the requirements file without using cache to reduce image size
|
10 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
11 |
+
|
12 |
+
# Define the command to start the application using Gunicorn with 4 worker processes
|
13 |
+
CMD ["gunicorn", "-w", "4", "-b", "0.0.0.0:7860", "app:superkart_api"]
|
app.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# Import necessary libraries
|
3 |
+
import numpy as np
|
4 |
+
import joblib # For loading the serialized model
|
5 |
+
import pandas as pd # For data manipulation
|
6 |
+
from flask import Flask, request, jsonify # For creating the Flask API
|
7 |
+
|
8 |
+
# Initialize Flask app with a name
|
9 |
+
superkart_api = Flask("superkart")
|
10 |
+
|
11 |
+
# Load the trained sales prediction model
|
12 |
+
model = joblib.load("backend/final_model.joblib")
|
13 |
+
|
14 |
+
# Define a route for the home page
|
15 |
+
@superkart_api.get('/')
|
16 |
+
def home():
|
17 |
+
return "Welcome to the SuperKart Sales Prediction API!"
|
18 |
+
|
19 |
+
# Define an endpoint to predict sales for a single product-store combination
|
20 |
+
@superkart_api.post('/v1/predict')
|
21 |
+
def predict_sales():
|
22 |
+
# Get JSON data from the request
|
23 |
+
data = request.get_json()
|
24 |
+
|
25 |
+
# Extract relevant features from the input data. The order of the column names matters.
|
26 |
+
sample = {
|
27 |
+
'Product_Weight': data['Product_Weight'],
|
28 |
+
'Product_Sugar_Content': data['Product_Sugar_Content'],
|
29 |
+
'Product_Allocated_Area': data['Product_Allocated_Area'],
|
30 |
+
'Product_MRP': data['Product_MRP'],
|
31 |
+
'Store_Size': data['Store_Size'],
|
32 |
+
'Store_Location_City_Type': data['Store_Location_City_Type'],
|
33 |
+
'Store_Type': data['Store_Type'],
|
34 |
+
'Product_Id_char': data['Product_Id_char'],
|
35 |
+
'Store_Age_Years': data['Store_Age_Years'],
|
36 |
+
'Product_Type_Category': data['Product_Type_Category']
|
37 |
+
}
|
38 |
+
|
39 |
+
# Convert the extracted data into a DataFrame
|
40 |
+
input_data = pd.DataFrame([sample])
|
41 |
+
|
42 |
+
# Make a sales prediction using the trained model
|
43 |
+
prediction = model.predict(input_data).tolist()[0]
|
44 |
+
|
45 |
+
# Return the prediction as a JSON response
|
46 |
+
return jsonify({'Sales': prediction})
|
47 |
+
|
48 |
+
|
49 |
+
# Run the Flask app in debug mode
|
50 |
+
if __name__ == '__main__':
|
51 |
+
superkart_api.run(debug=True)
|
final_model.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5112d9266cf15406ca8b854cf4da49282159d2c5447e153564bec23223c88370
|
3 |
+
size 184758
|
requirements.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas==2.2.2
|
2 |
+
numpy==2.0.2
|
3 |
+
scikit-learn==1.6.1
|
4 |
+
seaborn==0.13.2
|
5 |
+
xgboost==2.1.4
|
6 |
+
joblib==1.4.2
|
7 |
+
Werkzeug==2.2.2
|
8 |
+
flask==2.2.2
|
9 |
+
gunicorn==20.1.0
|
10 |
+
requests==2.32.3
|
11 |
+
uvicorn[standard]
|
12 |
+
FuzzyTM>=0.4.0
|
13 |
+
matplotlib==3.8.4
|
14 |
+
protobuf>=5.0.0
|