File size: 4,156 Bytes
190fdf9
 
 
be8bcb9
bc09c89
be8bcb9
 
190fdf9
 
 
 
 
 
 
 
 
 
 
be8bcb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad98131
 
190fdf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6b73e9
190fdf9
 
ac55567
 
190fdf9
 
d6b73e9
190fdf9
 
 
 
 
 
 
ac55567
 
 
 
 
 
 
e5aa863
 
 
 
 
 
 
 
 
1d52402
 
 
 
 
 
 
 
 
 
 
190fdf9
 
fc28ed1
ac55567
08ceaa4
190fdf9
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import gradio as gr
import numpy as np
import tensorflow as tf
from PIL import Image
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
import matplotlib.pyplot as plt
from matplotlib import gridspec

feature_extractor = SegformerFeatureExtractor.from_pretrained(
    "nvidia/segformer-b0-finetuned-cityscapes-1024-1024"
)
model = TFSegformerForSemanticSegmentation.from_pretrained(
    "nvidia/segformer-b0-finetuned-cityscapes-1024-1024"
)

def ade_palette():
    """ADE20K palette that maps each class to RGB values."""
    return [
        [255, 0, 0],
        [255, 187, 0],
        [255, 228, 0],
        [29, 219, 22],
        [178, 204, 255],
        [1, 0, 255], 
        [165, 102, 255],
        [217, 65, 197],
        [116, 116, 116],
        [204, 114, 61],
        [206, 242, 121],
        [61, 183, 204],
        [94, 94, 94],
        [196, 183, 59],
        [246, 246, 246],
        [209, 178, 255],
        [0, 87, 102],
        [153, 0, 76],
        [47, 157, 39]
    ]

labels_list = []

with open(r'labels.txt', 'r') as fp:
    for line in fp:
        labels_list.append(line[:-1])

colormap = np.asarray(ade_palette())

def label_to_color_image(label):
    if label.ndim != 2:
        raise ValueError("Expect 2-D input label")

    if np.max(label) >= len(colormap):
        raise ValueError("label value too large.")
    return colormap[label]

def draw_plot(pred_img, seg):
    fig = plt.figure(figsize=(20, 15))

    grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])

    plt.subplot(grid_spec[0])
    plt.imshow(pred_img)
    plt.axis('off')
    LABEL_NAMES = np.asarray(labels_list)
    FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
    FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)

    unique_labels = np.unique(seg.numpy().astype("uint8"))
    ax = plt.subplot(grid_spec[1])
    plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
    ax.yaxis.tick_right()
    plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
    plt.xticks([], [])
    ax.tick_params(width=0.0, labelsize=25)
    return fig

def sepia(input_img):
    input_img = Image.fromarray(input_img)

    inputs = feature_extractor(images=input_img, return_tensors="tf")
    outputs = model(**inputs)
    logits = outputs.logits

    logits = tf.transpose(logits, [0, 2, 3, 1])
    logits = tf.image.resize(
        logits, input_img.size[::-1]
    ) 
    seg = tf.math.argmax(logits, axis=-1)[0]

    probabilities = tf.nn.softmax(logits, axis=-1)[0]  # ํ™•๋ฅ ๊ฐ’ ์ถ”์ถœ

    color_seg = np.zeros(
        (seg.shape[0], seg.shape[1], 3), dtype=np.uint8
    )
    for label, color in enumerate(colormap):
        color_seg[seg.numpy() == label, :] = color

    pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
    pred_img = pred_img.astype(np.uint8)

    fig = draw_plot(pred_img, seg)

    # ๊ฐ ํด๋ž˜์Šค์˜ ํ™•๋ฅ ์„ ์ถœ๋ ฅ
    class_probabilities = {
        labels_list[i]: probabilities[:, :, i].numpy() for i in range(len(labels_list))
    }
    print(class_probabilities)

    class_probabilities = {
        labels_list[i]: probabilities[:, :, i].numpy() for i in range(len(labels_list))
    }

    # ๊ฐ ํด๋ž˜์Šค์˜ ํ™•๋ฅ ์„ ์ถœ๋ ฅ
    for label, prob_map in class_probabilities.items():
        print(f"{label} probabilities:")
        print(prob_map)
    
     class_probabilities = {
        labels_list[i]: np.max(probabilities[:, :, i].numpy()) for i in range(len(labels_list))
    }

    # ๊ฐ€์žฅ ๋†’์€ ํ™•๋ฅ ์„ ๊ฐ€์ง„ ํด๋ž˜์Šค๋ฅผ ์ถœ๋ ฅ
    max_prob_class = max(class_probabilities, key=class_probabilities.get)
    max_prob_value = class_probabilities[max_prob_class]
    
    print(f"Predicted class: {max_prob_class}, Probability: {max_prob_value:.4f}")

    return fig, f"Predicted class: {max_prob_class}, Probability: {max_prob_value:.4f}"

demo = gr.Interface(fn=sepia,
                    inputs=gr.Image(shape=(400, 600)),
                    outputs=["plot", "text"],
                    examples=["citiscapes-1.jpeg", "citiscapes-2.jpeg"],
                    allow_flagging='never')

demo.launch()