Spaces:
Sleeping
Sleeping
File size: 4,156 Bytes
190fdf9 be8bcb9 bc09c89 be8bcb9 190fdf9 be8bcb9 ad98131 190fdf9 d6b73e9 190fdf9 ac55567 190fdf9 d6b73e9 190fdf9 ac55567 e5aa863 1d52402 190fdf9 fc28ed1 ac55567 08ceaa4 190fdf9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
import gradio as gr
import numpy as np
import tensorflow as tf
from PIL import Image
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
import matplotlib.pyplot as plt
from matplotlib import gridspec
feature_extractor = SegformerFeatureExtractor.from_pretrained(
"nvidia/segformer-b0-finetuned-cityscapes-1024-1024"
)
model = TFSegformerForSemanticSegmentation.from_pretrained(
"nvidia/segformer-b0-finetuned-cityscapes-1024-1024"
)
def ade_palette():
"""ADE20K palette that maps each class to RGB values."""
return [
[255, 0, 0],
[255, 187, 0],
[255, 228, 0],
[29, 219, 22],
[178, 204, 255],
[1, 0, 255],
[165, 102, 255],
[217, 65, 197],
[116, 116, 116],
[204, 114, 61],
[206, 242, 121],
[61, 183, 204],
[94, 94, 94],
[196, 183, 59],
[246, 246, 246],
[209, 178, 255],
[0, 87, 102],
[153, 0, 76],
[47, 157, 39]
]
labels_list = []
with open(r'labels.txt', 'r') as fp:
for line in fp:
labels_list.append(line[:-1])
colormap = np.asarray(ade_palette())
def label_to_color_image(label):
if label.ndim != 2:
raise ValueError("Expect 2-D input label")
if np.max(label) >= len(colormap):
raise ValueError("label value too large.")
return colormap[label]
def draw_plot(pred_img, seg):
fig = plt.figure(figsize=(20, 15))
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
plt.subplot(grid_spec[0])
plt.imshow(pred_img)
plt.axis('off')
LABEL_NAMES = np.asarray(labels_list)
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
unique_labels = np.unique(seg.numpy().astype("uint8"))
ax = plt.subplot(grid_spec[1])
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
ax.yaxis.tick_right()
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
plt.xticks([], [])
ax.tick_params(width=0.0, labelsize=25)
return fig
def sepia(input_img):
input_img = Image.fromarray(input_img)
inputs = feature_extractor(images=input_img, return_tensors="tf")
outputs = model(**inputs)
logits = outputs.logits
logits = tf.transpose(logits, [0, 2, 3, 1])
logits = tf.image.resize(
logits, input_img.size[::-1]
)
seg = tf.math.argmax(logits, axis=-1)[0]
probabilities = tf.nn.softmax(logits, axis=-1)[0] # ํ๋ฅ ๊ฐ ์ถ์ถ
color_seg = np.zeros(
(seg.shape[0], seg.shape[1], 3), dtype=np.uint8
)
for label, color in enumerate(colormap):
color_seg[seg.numpy() == label, :] = color
pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
pred_img = pred_img.astype(np.uint8)
fig = draw_plot(pred_img, seg)
# ๊ฐ ํด๋์ค์ ํ๋ฅ ์ ์ถ๋ ฅ
class_probabilities = {
labels_list[i]: probabilities[:, :, i].numpy() for i in range(len(labels_list))
}
print(class_probabilities)
class_probabilities = {
labels_list[i]: probabilities[:, :, i].numpy() for i in range(len(labels_list))
}
# ๊ฐ ํด๋์ค์ ํ๋ฅ ์ ์ถ๋ ฅ
for label, prob_map in class_probabilities.items():
print(f"{label} probabilities:")
print(prob_map)
class_probabilities = {
labels_list[i]: np.max(probabilities[:, :, i].numpy()) for i in range(len(labels_list))
}
# ๊ฐ์ฅ ๋์ ํ๋ฅ ์ ๊ฐ์ง ํด๋์ค๋ฅผ ์ถ๋ ฅ
max_prob_class = max(class_probabilities, key=class_probabilities.get)
max_prob_value = class_probabilities[max_prob_class]
print(f"Predicted class: {max_prob_class}, Probability: {max_prob_value:.4f}")
return fig, f"Predicted class: {max_prob_class}, Probability: {max_prob_value:.4f}"
demo = gr.Interface(fn=sepia,
inputs=gr.Image(shape=(400, 600)),
outputs=["plot", "text"],
examples=["citiscapes-1.jpeg", "citiscapes-2.jpeg"],
allow_flagging='never')
demo.launch()
|