Spaces:
Sleeping
Sleeping
File size: 3,234 Bytes
190fdf9 be8bcb9 8cae0c3 be8bcb9 190fdf9 be8bcb9 190fdf9 fc28ed1 190fdf9 08ceaa4 190fdf9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
import gradio as gr
import numpy as np
import tensorflow as tf
from PIL import Image
from transformers import SegformerFeatureExtractor, SegformerImageProcessor, TFSegformerForSemanticSegmentation
import matplotlib.pyplot as plt
from matplotlib import gridspec
feature_extractor = SegformerFeatureExtractor.from_pretrained(
"nvidia/segformer-b0-finetuned-cityscapes-1024-1024"
)
model = TFSegformerForSemanticSegmentation.from_pretrained(
"nvidia/segformer-b0-finetuned-cityscapes-1024-1024"
)
def ade_palette():
"""ADE20K palette that maps each class to RGB values."""
return [
[255, 0, 0],
[255, 187, 0],
[255, 228, 0],
[29, 219, 22],
[178, 204, 255],
[1, 0, 255],
[165, 102, 255],
[217, 65, 197],
[116, 116, 116],
[204, 114, 61],
[206, 242, 121],
[61, 183, 204],
[94, 94, 94],
[196, 183, 59],
[246, 246, 246],
[209, 178, 255],
[0, 87, 102],
[153, 0, 76]
]
labels_list = []
with open(r'labels.txt', 'r') as fp:
for line in fp:
labels_list.append(line[:-1])
colormap = np.asarray(ade_palette())
def label_to_color_image(label):
if label.ndim != 2:
raise ValueError("Expect 2-D input label")
if np.max(label) >= len(colormap):
raise ValueError("label value too large.")
return colormap[label]
def draw_plot(pred_img, seg):
fig = plt.figure(figsize=(20, 15))
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
plt.subplot(grid_spec[0])
plt.imshow(pred_img)
plt.axis('off')
LABEL_NAMES = np.asarray(labels_list)
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
unique_labels = np.unique(seg.numpy().astype("uint8"))
ax = plt.subplot(grid_spec[1])
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
ax.yaxis.tick_right()
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
plt.xticks([], [])
ax.tick_params(width=0.0, labelsize=25)
return fig
def sepia(input_img):
input_img = Image.fromarray(input_img)
inputs = feature_extractor(images=input_img, return_tensors="tf")
outputs = model(**inputs)
logits = outputs.logits
logits = tf.transpose(logits, [0, 2, 3, 1])
logits = tf.image.resize(
logits, input_img.size[::-1]
) # We reverse the shape of `image` because `image.size` returns width and height.
seg = tf.math.argmax(logits, axis=-1)[0]
color_seg = np.zeros(
(seg.shape[0], seg.shape[1], 3), dtype=np.uint8
) # height, width, 3
for label, color in enumerate(colormap):
color_seg[seg.numpy() == label, :] = color
# Show image + mask
pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
pred_img = pred_img.astype(np.uint8)
fig = draw_plot(pred_img, seg)
return fig
demo = gr.Interface(fn=sepia,
inputs=gr.Image(shape=(400, 600)),
outputs=['plot'],
examples=["citiscapes-1.jpeg", "citiscapes-2.jpeg"],
allow_flagging='never')
demo.launch()
|