Spaces:
Running
Running
Update tinyllama_inference.py
Browse files- tinyllama_inference.py +35 -20
tinyllama_inference.py
CHANGED
@@ -1,42 +1,57 @@
|
|
1 |
import json
|
|
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
|
4 |
def load_model():
|
5 |
-
#
|
6 |
model_name = "Salesforce/codegen-350M-mono"
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
9 |
return tokenizer, model
|
10 |
|
11 |
def evaluate_code(question, code):
|
12 |
-
#
|
13 |
-
prompt = f"""
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
17 |
Problem: "{question}"
|
18 |
Solution: "{code}"
|
19 |
-
Return ONLY valid JSON: {{"stars": number, "feedback": string}}
|
20 |
-
Do not include any extra text outside the JSON.
|
21 |
"""
|
22 |
-
# Load model and tokenizer
|
23 |
tokenizer, model = load_model()
|
|
|
24 |
inputs = tokenizer(prompt, return_tensors="pt")
|
25 |
-
outputs = model.generate(
|
|
|
|
|
|
|
|
|
|
|
26 |
response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
return result
|
32 |
|
33 |
-
# For direct testing from the command line
|
34 |
if __name__ == "__main__":
|
35 |
import sys
|
36 |
if len(sys.argv) < 3:
|
37 |
print(json.dumps({"error": "Please provide a question and code as arguments"}))
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
1 |
import json
|
2 |
+
import re
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
|
5 |
def load_model():
|
6 |
+
# Using a public model for code evaluation.
|
7 |
model_name = "Salesforce/codegen-350M-mono"
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
10 |
return tokenizer, model
|
11 |
|
12 |
def evaluate_code(question, code):
|
13 |
+
# Refined prompt to enforce JSON-only output.
|
14 |
+
prompt = f"""You are an expert code evaluator.
|
15 |
+
Evaluate the user's solution to the following problem.
|
16 |
+
Return ONLY a JSON object with two keys:
|
17 |
+
- "stars": an integer between 0 and 5 (0 means completely incorrect, 5 means excellent).
|
18 |
+
- "feedback": a concise message.
|
19 |
+
Do not include any additional text.
|
20 |
Problem: "{question}"
|
21 |
Solution: "{code}"
|
|
|
|
|
22 |
"""
|
23 |
+
# Load model and tokenizer.
|
24 |
tokenizer, model = load_model()
|
25 |
+
# Generate a response with reduced max tokens and a lower temperature for determinism.
|
26 |
inputs = tokenizer(prompt, return_tensors="pt")
|
27 |
+
outputs = model.generate(
|
28 |
+
**inputs,
|
29 |
+
max_new_tokens=100,
|
30 |
+
temperature=0.2,
|
31 |
+
pad_token_id=tokenizer.eos_token_id
|
32 |
+
)
|
33 |
response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
34 |
+
|
35 |
+
# Attempt to extract the JSON object from the response.
|
36 |
+
match = re.search(r'\{.*\}', response_text)
|
37 |
+
if match:
|
38 |
+
json_text = match.group(0)
|
39 |
+
try:
|
40 |
+
result = json.loads(json_text)
|
41 |
+
except Exception as e:
|
42 |
+
result = {"stars": 0, "feedback": "Evaluation failed. Unable to parse AI response."}
|
43 |
+
else:
|
44 |
+
result = {"stars": 0, "feedback": "Evaluation failed. Unable to extract JSON from AI response."}
|
45 |
+
|
46 |
return result
|
47 |
|
48 |
+
# For direct testing from the command line.
|
49 |
if __name__ == "__main__":
|
50 |
import sys
|
51 |
if len(sys.argv) < 3:
|
52 |
print(json.dumps({"error": "Please provide a question and code as arguments"}))
|
53 |
+
sys.exit(1)
|
54 |
+
question = sys.argv[1]
|
55 |
+
code = sys.argv[2]
|
56 |
+
result = evaluate_code(question, code)
|
57 |
+
print(json.dumps(result))
|