Spaces:
Sleeping
Sleeping
Commit
·
4441c50
1
Parent(s):
8aa99b8
Update tinyllama_inference.py to use deepseek-ai/deepseek-coder-1.3b-instruct
Browse files- tinyllama_inference.py +5 -5
tinyllama_inference.py
CHANGED
|
@@ -8,8 +8,8 @@ tokenizer, model = None, None
|
|
| 8 |
def load_model():
|
| 9 |
global tokenizer, model
|
| 10 |
if tokenizer is None or model is None:
|
| 11 |
-
# Use
|
| 12 |
-
model_name = "deepseek-ai/deepseek-coder-1.3b"
|
| 13 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 14 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 15 |
return tokenizer, model
|
|
@@ -31,15 +31,15 @@ Solution: "{code}"
|
|
| 31 |
# Adjust parameters for concise and deterministic output
|
| 32 |
outputs = model.generate(
|
| 33 |
**inputs,
|
| 34 |
-
max_new_tokens=60, # Limit output length
|
| 35 |
temperature=0.0, # Deterministic output
|
| 36 |
pad_token_id=tokenizer.eos_token_id,
|
| 37 |
do_sample=False
|
| 38 |
)
|
| 39 |
response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 40 |
-
print("Raw model response:", response_text) # Debug output
|
| 41 |
|
| 42 |
-
# Use regex to extract the JSON object from the response
|
| 43 |
match = re.search(r'\{.*?\}', response_text)
|
| 44 |
if match:
|
| 45 |
json_text = match.group(0)
|
|
|
|
| 8 |
def load_model():
|
| 9 |
global tokenizer, model
|
| 10 |
if tokenizer is None or model is None:
|
| 11 |
+
# Use the DeepSeek instruct model for code evaluation.
|
| 12 |
+
model_name = "deepseek-ai/deepseek-coder-1.3b-instruct"
|
| 13 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 14 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 15 |
return tokenizer, model
|
|
|
|
| 31 |
# Adjust parameters for concise and deterministic output
|
| 32 |
outputs = model.generate(
|
| 33 |
**inputs,
|
| 34 |
+
max_new_tokens=60, # Limit output length for faster responses
|
| 35 |
temperature=0.0, # Deterministic output
|
| 36 |
pad_token_id=tokenizer.eos_token_id,
|
| 37 |
do_sample=False
|
| 38 |
)
|
| 39 |
response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 40 |
+
print("Raw model response:", response_text) # Debug: Inspect raw output
|
| 41 |
|
| 42 |
+
# Use regex (non-greedy) to extract the first JSON object from the response
|
| 43 |
match = re.search(r'\{.*?\}', response_text)
|
| 44 |
if match:
|
| 45 |
json_text = match.group(0)
|