Spaces:
Sleeping
Sleeping
Commit
·
6fadedd
1
Parent(s):
8206a45
Update tinyllama_inference.py with improved evaluation and performance
Browse files- tinyllama_inference.py +7 -6
tinyllama_inference.py
CHANGED
@@ -8,13 +8,14 @@ tokenizer, model = None, None
|
|
8 |
def load_model():
|
9 |
global tokenizer, model
|
10 |
if tokenizer is None or model is None:
|
11 |
-
|
|
|
12 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
14 |
return tokenizer, model
|
15 |
|
16 |
def evaluate_code(question, code):
|
17 |
-
# Updated prompt:
|
18 |
prompt = f"""You are an expert code evaluator.
|
19 |
Evaluate the following solution for the given problem.
|
20 |
Respond with exactly one JSON object (with no extra text) that has exactly two keys:
|
@@ -27,20 +28,20 @@ Solution: "{code}"
|
|
27 |
"""
|
28 |
tokenizer, model = load_model()
|
29 |
inputs = tokenizer(prompt, return_tensors="pt")
|
30 |
-
# Adjust parameters for
|
31 |
outputs = model.generate(
|
32 |
**inputs,
|
33 |
-
max_new_tokens=60, #
|
34 |
temperature=0.0, # Deterministic output
|
35 |
pad_token_id=tokenizer.eos_token_id,
|
36 |
do_sample=False
|
37 |
)
|
38 |
response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
39 |
|
40 |
-
# Debug:
|
41 |
# print("Raw model response:", response_text)
|
42 |
|
43 |
-
# Use regex to extract the
|
44 |
match = re.search(r'\{.*\}', response_text)
|
45 |
if match:
|
46 |
json_text = match.group(0)
|
|
|
8 |
def load_model():
|
9 |
global tokenizer, model
|
10 |
if tokenizer is None or model is None:
|
11 |
+
# Use a DeepSeek model for code evaluation.
|
12 |
+
model_name = "deepseek-ai/deepseek-coder-1.3b" # Adjust to your chosen DeepSeek model
|
13 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
14 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
15 |
return tokenizer, model
|
16 |
|
17 |
def evaluate_code(question, code):
|
18 |
+
# Updated prompt: instructs the model to output exactly valid JSON
|
19 |
prompt = f"""You are an expert code evaluator.
|
20 |
Evaluate the following solution for the given problem.
|
21 |
Respond with exactly one JSON object (with no extra text) that has exactly two keys:
|
|
|
28 |
"""
|
29 |
tokenizer, model = load_model()
|
30 |
inputs = tokenizer(prompt, return_tensors="pt")
|
31 |
+
# Adjust parameters for concise and deterministic output
|
32 |
outputs = model.generate(
|
33 |
**inputs,
|
34 |
+
max_new_tokens=60, # Limit output length
|
35 |
temperature=0.0, # Deterministic output
|
36 |
pad_token_id=tokenizer.eos_token_id,
|
37 |
do_sample=False
|
38 |
)
|
39 |
response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
40 |
|
41 |
+
# Debug: Uncomment the following line to print raw output if needed
|
42 |
# print("Raw model response:", response_text)
|
43 |
|
44 |
+
# Use regex to extract the JSON object from the response
|
45 |
match = re.search(r'\{.*\}', response_text)
|
46 |
if match:
|
47 |
json_text = match.group(0)
|