Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,31 +1,56 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
def evaluate_code(language, question, code):
|
4 |
-
# Check if code is provided
|
5 |
if not code.strip():
|
6 |
return "Error: No code provided. Please enter your solution code."
|
7 |
-
|
8 |
-
#
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
18 |
|
19 |
iface = gr.Interface(
|
20 |
fn=evaluate_code,
|
21 |
inputs=[
|
22 |
gr.Dropdown(choices=["C", "Python", "Java"], label="Language"),
|
23 |
gr.Textbox(lines=2, placeholder="Enter the problem question here...", label="Question"),
|
24 |
-
gr.Code(label="Your Code
|
25 |
],
|
26 |
outputs=gr.Textbox(label="Evaluation Result"),
|
27 |
title="Code Evaluator",
|
28 |
-
description="Enter a coding question and your solution
|
29 |
)
|
30 |
|
31 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
+
import json
|
3 |
+
import torch
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
|
6 |
+
def load_model():
|
7 |
+
# Change to the actual TinyLlama model identifier available on Hugging Face.
|
8 |
+
model_name = "TheBloke/tiny-llama-7b"
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
11 |
+
return tokenizer, model
|
12 |
+
|
13 |
+
# Load the model once when the app starts
|
14 |
+
tokenizer, model = load_model()
|
15 |
+
|
16 |
+
def evaluate_tinyllama(prompt):
|
17 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
18 |
+
outputs = model.generate(**inputs, max_new_tokens=150)
|
19 |
+
response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
20 |
+
try:
|
21 |
+
result = json.loads(response_text.strip())
|
22 |
+
except Exception as e:
|
23 |
+
result = {"stars": 0, "feedback": "Evaluation failed. Unable to parse AI response."}
|
24 |
+
return result
|
25 |
|
26 |
def evaluate_code(language, question, code):
|
|
|
27 |
if not code.strip():
|
28 |
return "Error: No code provided. Please enter your solution code."
|
29 |
+
|
30 |
+
# Build a detailed prompt for the evaluator.
|
31 |
+
prompt = f"""
|
32 |
+
You are an expert code evaluator.
|
33 |
+
Rate the following solution on a scale of 0-5 (0 = completely incorrect, 5 = excellent) and provide a concise feedback message.
|
34 |
+
Language: {language}
|
35 |
+
Problem: "{question}"
|
36 |
+
Solution: "{code}"
|
37 |
+
Return ONLY valid JSON: {{"stars": number, "feedback": string}}.
|
38 |
+
Do not include any extra text.
|
39 |
+
"""
|
40 |
+
result = evaluate_tinyllama(prompt)
|
41 |
+
# Format the output nicely
|
42 |
+
return f"Stars: {result.get('stars', 0)}\nFeedback: {result.get('feedback', '')}"
|
43 |
|
44 |
iface = gr.Interface(
|
45 |
fn=evaluate_code,
|
46 |
inputs=[
|
47 |
gr.Dropdown(choices=["C", "Python", "Java"], label="Language"),
|
48 |
gr.Textbox(lines=2, placeholder="Enter the problem question here...", label="Question"),
|
49 |
+
gr.Code(language="python", label="Your Code")
|
50 |
],
|
51 |
outputs=gr.Textbox(label="Evaluation Result"),
|
52 |
title="Code Evaluator",
|
53 |
+
description="Enter a coding question and your solution to get AI-powered feedback. Supports C, Python, and Java."
|
54 |
)
|
55 |
|
56 |
if __name__ == "__main__":
|