Spaces:
Sleeping
Sleeping
Commit
·
e62582d
1
Parent(s):
b13d31f
Improve JSON extraction with fallback methods
Browse files- tinyllama_inference.py +12 -26
tinyllama_inference.py
CHANGED
|
@@ -15,39 +15,25 @@ def load_model():
|
|
| 15 |
return tokenizer, model
|
| 16 |
|
| 17 |
def extract_json(response_text):
|
| 18 |
-
# First
|
| 19 |
matches = re.findall(r'\{.*?\}', response_text, re.DOTALL)
|
| 20 |
-
|
| 21 |
-
|
| 22 |
try:
|
| 23 |
-
temp = json.loads(
|
| 24 |
if isinstance(temp, dict) and "stars" in temp and "feedback" in temp:
|
| 25 |
return temp
|
| 26 |
except Exception:
|
| 27 |
continue
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
if len(parts) > 1:
|
| 32 |
-
possible = parts[-1].strip()
|
| 33 |
-
# Try to extract JSON from this part.
|
| 34 |
try:
|
| 35 |
-
temp = json.loads(
|
| 36 |
if isinstance(temp, dict) and "stars" in temp and "feedback" in temp:
|
| 37 |
return temp
|
| 38 |
except Exception:
|
| 39 |
-
|
| 40 |
-
matches = re.findall(r'\{.*?\}', possible, re.DOTALL)
|
| 41 |
-
for m in matches:
|
| 42 |
-
json_text = m.strip()
|
| 43 |
-
try:
|
| 44 |
-
temp = json.loads(json_text)
|
| 45 |
-
if isinstance(temp, dict) and "stars" in temp and "feedback" in temp:
|
| 46 |
-
return temp
|
| 47 |
-
except Exception:
|
| 48 |
-
continue
|
| 49 |
-
|
| 50 |
-
# If all methods fail, return a fallback result.
|
| 51 |
return {"stars": 0, "feedback": "Evaluation failed. Unable to extract valid JSON from AI response."}
|
| 52 |
|
| 53 |
def evaluate_code(question, code):
|
|
@@ -73,13 +59,13 @@ Your response:"""
|
|
| 73 |
inputs = tokenizer(prompt, return_tensors="pt")
|
| 74 |
outputs = model.generate(
|
| 75 |
**inputs,
|
| 76 |
-
max_new_tokens=120, #
|
| 77 |
-
temperature=0.2, #
|
| 78 |
pad_token_id=tokenizer.eos_token_id,
|
| 79 |
do_sample=True
|
| 80 |
)
|
| 81 |
response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 82 |
-
print("Raw model response:", response_text) # Debug output
|
| 83 |
|
| 84 |
result = extract_json(response_text)
|
| 85 |
return result
|
|
|
|
| 15 |
return tokenizer, model
|
| 16 |
|
| 17 |
def extract_json(response_text):
|
| 18 |
+
# First attempt: Use regex (non-greedy, with DOTALL) to find JSON blocks
|
| 19 |
matches = re.findall(r'\{.*?\}', response_text, re.DOTALL)
|
| 20 |
+
# Check the matches in reverse order (last one might be the evaluation output)
|
| 21 |
+
for m in reversed(matches):
|
| 22 |
try:
|
| 23 |
+
temp = json.loads(m)
|
| 24 |
if isinstance(temp, dict) and "stars" in temp and "feedback" in temp:
|
| 25 |
return temp
|
| 26 |
except Exception:
|
| 27 |
continue
|
| 28 |
+
# Fallback: try extracting JSON from each line that looks like a JSON object
|
| 29 |
+
json_lines = [line.strip() for line in response_text.splitlines() if line.strip().startswith('{') and line.strip().endswith('}')]
|
| 30 |
+
for line in reversed(json_lines):
|
|
|
|
|
|
|
|
|
|
| 31 |
try:
|
| 32 |
+
temp = json.loads(line)
|
| 33 |
if isinstance(temp, dict) and "stars" in temp and "feedback" in temp:
|
| 34 |
return temp
|
| 35 |
except Exception:
|
| 36 |
+
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
return {"stars": 0, "feedback": "Evaluation failed. Unable to extract valid JSON from AI response."}
|
| 38 |
|
| 39 |
def evaluate_code(question, code):
|
|
|
|
| 59 |
inputs = tokenizer(prompt, return_tensors="pt")
|
| 60 |
outputs = model.generate(
|
| 61 |
**inputs,
|
| 62 |
+
max_new_tokens=120, # Increase token allowance for a complete response
|
| 63 |
+
temperature=0.2, # Low randomness for deterministic output
|
| 64 |
pad_token_id=tokenizer.eos_token_id,
|
| 65 |
do_sample=True
|
| 66 |
)
|
| 67 |
response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 68 |
+
print("Raw model response:", response_text) # Debug: Inspect raw output
|
| 69 |
|
| 70 |
result = extract_json(response_text)
|
| 71 |
return result
|