Update app.py
Browse files
app.py
CHANGED
@@ -1,70 +1,112 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
from pydub import AudioSegment
|
4 |
-
from pydub.silence import detect_nonsilent
|
5 |
import numpy as np
|
|
|
|
|
6 |
import tempfile
|
7 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
def process_video(video_path, min_silence_length=1000, silence_threshold=-40):
|
10 |
-
"""
|
11 |
-
Process video to remove silent parts
|
12 |
-
Parameters:
|
13 |
-
- video_path: path to input video
|
14 |
-
- min_silence_length: minimum length of silence to detect (in ms)
|
15 |
-
- silence_threshold: volume threshold to consider as silence (in dB)
|
16 |
-
"""
|
17 |
-
# Create temporary directory for processing
|
18 |
temp_dir = tempfile.mkdtemp()
|
19 |
|
20 |
try:
|
21 |
-
#
|
22 |
-
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
-
video.audio.write_audiofile(temp_audio_path, codec='pcm_s16le')
|
27 |
|
28 |
-
|
29 |
-
|
30 |
|
31 |
-
#
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
)
|
37 |
-
|
38 |
-
if not nonsilent_ranges:
|
39 |
-
return None, "No non-silent parts detected in the video."
|
40 |
|
41 |
-
#
|
42 |
-
|
|
|
|
|
43 |
|
44 |
-
#
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
|
51 |
-
|
52 |
|
53 |
-
#
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
|
58 |
-
video.close()
|
59 |
-
final_clip.close()
|
60 |
-
|
61 |
-
return output_path, "Video processed successfully!"
|
62 |
|
63 |
except Exception as e:
|
64 |
-
return None, f"
|
65 |
-
|
66 |
finally:
|
67 |
-
#
|
68 |
for file in os.listdir(temp_dir):
|
69 |
try:
|
70 |
os.remove(os.path.join(temp_dir, file))
|
|
|
1 |
import gradio as gr
|
2 |
+
import cv2
|
|
|
|
|
3 |
import numpy as np
|
4 |
+
import soundfile as sf
|
5 |
+
from scipy.io import wavfile
|
6 |
import tempfile
|
7 |
import os
|
8 |
+
import subprocess
|
9 |
+
|
10 |
+
def extract_audio(video_path):
|
11 |
+
"""Extrai áudio do vídeo usando ffmpeg"""
|
12 |
+
temp_audio = tempfile.mktemp('.wav')
|
13 |
+
command = [
|
14 |
+
'ffmpeg', '-i', video_path,
|
15 |
+
'-ab', '160k', '-ac', '2', '-ar', '44100', '-vn', temp_audio
|
16 |
+
]
|
17 |
+
subprocess.call(command, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
|
18 |
+
return temp_audio
|
19 |
+
|
20 |
+
def detect_silence(audio_path, min_silence_length=1000, silence_threshold=-40):
|
21 |
+
"""Detecta períodos de silêncio no áudio"""
|
22 |
+
# Lê o arquivo de áudio
|
23 |
+
sample_rate, audio_data = wavfile.read(audio_path)
|
24 |
+
|
25 |
+
# Converte para mono se estéreo
|
26 |
+
if len(audio_data.shape) > 1:
|
27 |
+
audio_data = audio_data.mean(axis=1)
|
28 |
+
|
29 |
+
# Calcula a energia do áudio em janelas
|
30 |
+
window_size = int(sample_rate * (min_silence_length/1000))
|
31 |
+
overlapping = int(window_size/2)
|
32 |
+
|
33 |
+
non_silent_ranges = []
|
34 |
+
start = None
|
35 |
+
|
36 |
+
for i in range(0, len(audio_data), overlapping):
|
37 |
+
window = audio_data[i:i+window_size]
|
38 |
+
if len(window) < window_size:
|
39 |
+
break
|
40 |
+
|
41 |
+
energy_db = 10 * np.log10(np.mean(window**2) + 1e-10)
|
42 |
+
|
43 |
+
if energy_db > silence_threshold:
|
44 |
+
if start is None:
|
45 |
+
start = i
|
46 |
+
elif start is not None:
|
47 |
+
non_silent_ranges.append((start/sample_rate, i/sample_rate))
|
48 |
+
start = None
|
49 |
+
|
50 |
+
if start is not None:
|
51 |
+
non_silent_ranges.append((start/sample_rate, len(audio_data)/sample_rate))
|
52 |
+
|
53 |
+
return non_silent_ranges
|
54 |
|
55 |
def process_video(video_path, min_silence_length=1000, silence_threshold=-40):
|
56 |
+
"""Processa o vídeo removendo partes silenciosas"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
temp_dir = tempfile.mkdtemp()
|
58 |
|
59 |
try:
|
60 |
+
# Extrai áudio
|
61 |
+
audio_path = extract_audio(video_path)
|
62 |
|
63 |
+
# Detecta ranges não silenciosos
|
64 |
+
non_silent_ranges = detect_silence(audio_path, min_silence_length, silence_threshold)
|
|
|
65 |
|
66 |
+
if not non_silent_ranges:
|
67 |
+
return None, "Nenhuma parte não-silenciosa detectada no vídeo."
|
68 |
|
69 |
+
# Abre o vídeo
|
70 |
+
cap = cv2.VideoCapture(video_path)
|
71 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
72 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
73 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
|
|
|
|
|
|
|
|
74 |
|
75 |
+
# Prepara o arquivo de saída
|
76 |
+
output_path = os.path.join(temp_dir, "output_video.mp4")
|
77 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
78 |
+
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
79 |
|
80 |
+
# Processa cada range não silencioso
|
81 |
+
for start_time, end_time in non_silent_ranges:
|
82 |
+
start_frame = int(start_time * fps)
|
83 |
+
end_frame = int(end_time * fps)
|
84 |
+
|
85 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, start_frame)
|
86 |
+
for _ in range(end_frame - start_frame):
|
87 |
+
ret, frame = cap.read()
|
88 |
+
if not ret:
|
89 |
+
break
|
90 |
+
out.write(frame)
|
91 |
|
92 |
+
cap.release()
|
93 |
+
out.release()
|
94 |
|
95 |
+
# Adiciona áudio ao vídeo final
|
96 |
+
final_path = os.path.join(temp_dir, "final_output.mp4")
|
97 |
+
command = [
|
98 |
+
'ffmpeg', '-i', output_path, '-i', audio_path,
|
99 |
+
'-c:v', 'copy', '-c:a', 'aac', final_path
|
100 |
+
]
|
101 |
+
subprocess.call(command, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
|
102 |
|
103 |
+
return final_path, "Vídeo processado com sucesso!"
|
|
|
|
|
|
|
|
|
104 |
|
105 |
except Exception as e:
|
106 |
+
return None, f"Erro ao processar vídeo: {str(e)}"
|
107 |
+
|
108 |
finally:
|
109 |
+
# Limpa arquivos temporários
|
110 |
for file in os.listdir(temp_dir):
|
111 |
try:
|
112 |
os.remove(os.path.join(temp_dir, file))
|