DHEIVER's picture
Update app.py
a9c5239 verified
raw
history blame
5.74 kB
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoProcessor
from PIL import Image
import pandas as pd
import numpy as np
# Carrega o modelo Emu3-Gen
model = AutoModelForCausalLM.from_pretrained("BAAI/Emu3-Gen", trust_remote_code=True)
processor = AutoProcessor.from_pretrained("BAAI/Emu3-Gen", trust_remote_code=True)
# Base de dados nutricional
NUTRITION_DB = {
"arroz": {"calorias": 130, "proteinas": 2.7, "carboidratos": 28, "gorduras": 0.3},
"feijão": {"calorias": 77, "proteinas": 5.2, "carboidratos": 13.6, "gorduras": 0.5},
"carne": {"calorias": 250, "proteinas": 26, "carboidratos": 0, "gorduras": 17},
"batata frita": {"calorias": 312, "proteinas": 3.4, "carboidratos": 41, "gorduras": 15},
"salada": {"calorias": 15, "proteinas": 1.4, "carboidratos": 2.9, "gorduras": 0.2}
}
def process_image(image, progress=gr.Progress()):
"""Processa a imagem usando Emu3-Gen"""
try:
progress(0.3, desc="Processando imagem...")
# Prepara a imagem
if isinstance(image, str):
image = Image.open(image)
elif isinstance(image, np.ndarray):
image = Image.fromarray(image)
# Prompt específico para análise de alimentos
prompt = "Describe in detail all the foods present in this image, including their preparation methods."
progress(0.6, desc="Analisando conteúdo...")
# Processa a imagem
inputs = processor(
images=image,
text=prompt,
return_tensors="pt"
).to(model.device)
# Gera a descrição
outputs = model.generate(
**inputs,
max_new_tokens=100,
num_beams=5,
temperature=0.7,
top_p=0.9
)
description = processor.decode(outputs[0], skip_special_tokens=True)
progress(1.0, desc="Concluído!")
return description
except Exception as e:
raise gr.Error(f"Erro no processamento: {str(e)}")
def analyze_nutrition(description):
"""Analisa nutrientes baseado na descrição"""
found_foods = []
# Identifica alimentos na descrição
for food in NUTRITION_DB.keys():
if food.lower() in description.lower():
found_foods.append(food)
# Calcula nutrientes
total_nutrients = {
"calorias": 0,
"proteinas": 0,
"carboidratos": 0,
"gorduras": 0
}
for food in found_foods:
for nutrient, value in NUTRITION_DB[food].items():
total_nutrients[nutrient] += value
return total_nutrients, found_foods
def analyze_image(image):
"""Função principal de análise"""
try:
# Processa a imagem
description = process_image(image)
# Analisa nutrientes
total_nutrients, found_foods = analyze_nutrition(description)
# Prepara dados para visualização
table_data = [
["Calorias", f"{total_nutrients['calorias']:.1f} kcal"],
["Proteínas", f"{total_nutrients['proteinas']:.1f}g"],
["Carboidratos", f"{total_nutrients['carboidratos']:.1f}g"],
["Gorduras", f"{total_nutrients['gorduras']:.1f}g"]
]
# Dados para o gráfico
plot_data = pd.DataFrame({
'Nutriente': ['Proteínas', 'Carboidratos', 'Gorduras'],
'Quantidade': [
total_nutrients['proteinas'],
total_nutrients['carboidratos'],
total_nutrients['gorduras']
]
})
# Monta o relatório
analysis = f"""### 🔍 Análise da Imagem:
{description}
### 🍽️ Alimentos Identificados:
{', '.join(found_foods)}
### 📊 Informação Nutricional:
• Calorias: {total_nutrients['calorias']:.1f} kcal
• Proteínas: {total_nutrients['proteinas']:.1f}g
• Carboidratos: {total_nutrients['carboidratos']:.1f}g
• Gorduras: {total_nutrients['gorduras']:.1f}g
### 💡 Recomendações:
{"⚠️ Alto valor calórico" if total_nutrients['calorias'] > 800 else "✅ Calorias adequadas"}
{"⚠️ Considere reduzir carboidratos" if total_nutrients['carboidratos'] > 60 else "✅ Carboidratos adequados"}
{"⚠️ Alto teor de gorduras" if total_nutrients['gorduras'] > 20 else "✅ Gorduras adequadas"}
"""
return analysis, table_data, plot_data
except Exception as e:
return str(e), None, None
# Interface Gradio
with gr.Blocks(theme=gr.themes.Soft()) as iface:
gr.Markdown("# 🍽️ NutriAI - Análise Nutricional com IA")
with gr.Row():
with gr.Column():
image_input = gr.Image(
type="pil",
label="Foto do Prato",
sources=["upload", "webcam"]
)
analyze_btn = gr.Button("📊 Analisar", variant="primary")
with gr.Column():
output_text = gr.Markdown()
with gr.Row():
output_table = gr.Dataframe(
headers=["Nutriente", "Quantidade"],
label="Informação Nutricional"
)
output_plot = gr.BarPlot(
x="Nutriente",
y="Quantidade",
title="Macronutrientes (g)",
height=300
)
analyze_btn.click(
fn=analyze_image,
inputs=[image_input],
outputs=[output_text, output_table, output_plot]
)
if __name__ == "__main__":
print(f"Usando dispositivo: {'CUDA' if torch.cuda.is_available() else 'CPU'}")
iface.launch(share=False)