Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,72 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from transformers import pipeline, AutoProcessor, AutoModelForVision2Seq
|
4 |
-
from PIL import Image
|
5 |
import numpy as np
|
6 |
import os
|
7 |
from huggingface_hub import snapshot_download
|
8 |
import logging
|
|
|
|
|
|
|
|
|
9 |
|
10 |
# Configure logging
|
11 |
logging.basicConfig(level=logging.INFO)
|
12 |
logger = logging.getLogger(__name__)
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
class NutritionalAnalyzer:
|
15 |
def __init__(self):
|
16 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
self.models = {}
|
18 |
self.processors = {}
|
|
|
19 |
|
20 |
def initialize_model(self, model_name):
|
21 |
"""Initialize a specific model with error handling and caching"""
|
@@ -37,7 +88,7 @@ class NutritionalAnalyzer:
|
|
37 |
|
38 |
config = model_configs.get(model_name)
|
39 |
if not config:
|
40 |
-
raise ValueError(f"
|
41 |
|
42 |
# Ensure cache directory exists
|
43 |
os.makedirs(config["local_cache"], exist_ok=True)
|
@@ -72,19 +123,6 @@ class NutritionalAnalyzer:
|
|
72 |
logger.error(f"Error initializing {model_name}: {str(e)}")
|
73 |
return False
|
74 |
|
75 |
-
def prepare_image(self, image):
|
76 |
-
"""Prepare image for model input"""
|
77 |
-
if isinstance(image, str):
|
78 |
-
image = Image.open(image)
|
79 |
-
elif isinstance(image, np.ndarray):
|
80 |
-
image = Image.fromarray(image)
|
81 |
-
|
82 |
-
# Ensure image is in RGB mode
|
83 |
-
if image.mode != "RGB":
|
84 |
-
image = image.convert("RGB")
|
85 |
-
|
86 |
-
return image
|
87 |
-
|
88 |
def generate_nutritional_prompt(self, user_question):
|
89 |
"""Generate a comprehensive nutritional analysis prompt"""
|
90 |
return f"""Como nutricionista especializado, analise esta refeição detalhadamente:
|
@@ -111,6 +149,9 @@ Por favor, forneça uma análise detalhada em português."""
|
|
111 |
def analyze_image(self, image, question, model_choice):
|
112 |
"""Analyze image with nutritional focus"""
|
113 |
try:
|
|
|
|
|
|
|
114 |
# Convert model choice to internal name
|
115 |
model_name = model_choice.lower().replace("-", "")
|
116 |
|
@@ -118,34 +159,48 @@ Por favor, forneça uma análise detalhada em português."""
|
|
118 |
if not self.initialize_model(model_name):
|
119 |
return "Erro: Não foi possível inicializar o modelo. Por favor, tente novamente."
|
120 |
|
121 |
-
#
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
nutritional_prompt = self.generate_nutritional_prompt(question)
|
124 |
|
125 |
# Process input
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
131 |
|
132 |
# Generate response with enhanced parameters
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
|
|
|
|
|
|
147 |
|
148 |
-
|
|
|
149 |
|
150 |
except Exception as e:
|
151 |
logger.error(f"Analysis error: {str(e)}")
|
@@ -234,6 +289,7 @@ def create_interface():
|
|
234 |
2. Capture todos os elementos do prato
|
235 |
3. Evite ângulos muito inclinados
|
236 |
4. Seja específico em suas perguntas
|
|
|
237 |
""")
|
238 |
|
239 |
analyze_btn.click(
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from transformers import pipeline, AutoProcessor, AutoModelForVision2Seq
|
4 |
+
from PIL import Image, ImageOps
|
5 |
import numpy as np
|
6 |
import os
|
7 |
from huggingface_hub import snapshot_download
|
8 |
import logging
|
9 |
+
from pathlib import Path
|
10 |
+
import tempfile
|
11 |
+
import requests
|
12 |
+
from io import BytesIO
|
13 |
|
14 |
# Configure logging
|
15 |
logging.basicConfig(level=logging.INFO)
|
16 |
logger = logging.getLogger(__name__)
|
17 |
|
18 |
+
class ImageHandler:
|
19 |
+
"""Handle image processing and conversion"""
|
20 |
+
@staticmethod
|
21 |
+
def convert_to_rgb(image_path):
|
22 |
+
"""Convert image to RGB format supporting multiple formats"""
|
23 |
+
try:
|
24 |
+
# If image is a URL, download it first
|
25 |
+
if isinstance(image_path, str) and (image_path.startswith('http://') or image_path.startswith('https://')):
|
26 |
+
response = requests.get(image_path)
|
27 |
+
image_data = BytesIO(response.content)
|
28 |
+
image = Image.open(image_data)
|
29 |
+
else:
|
30 |
+
image = Image.open(image_path)
|
31 |
+
|
32 |
+
# Convert RGBA to RGB if needed
|
33 |
+
if image.mode == 'RGBA':
|
34 |
+
background = Image.new('RGB', image.size, (255, 255, 255))
|
35 |
+
background.paste(image, mask=image.split()[3])
|
36 |
+
image = background
|
37 |
+
# Convert any other mode to RGB
|
38 |
+
elif image.mode != 'RGB':
|
39 |
+
image = image.convert('RGB')
|
40 |
+
|
41 |
+
return image
|
42 |
+
|
43 |
+
except Exception as e:
|
44 |
+
logger.error(f"Error converting image: {str(e)}")
|
45 |
+
raise ValueError(f"Não foi possível processar a imagem. Erro: {str(e)}")
|
46 |
+
|
47 |
+
@staticmethod
|
48 |
+
def process_image(image):
|
49 |
+
"""Process image from various input types"""
|
50 |
+
try:
|
51 |
+
if isinstance(image, np.ndarray):
|
52 |
+
return Image.fromarray(image)
|
53 |
+
elif isinstance(image, Image.Image):
|
54 |
+
return image
|
55 |
+
elif isinstance(image, (str, Path)):
|
56 |
+
return ImageHandler.convert_to_rgb(image)
|
57 |
+
else:
|
58 |
+
raise ValueError("Formato de imagem não suportado")
|
59 |
+
|
60 |
+
except Exception as e:
|
61 |
+
logger.error(f"Error processing image: {str(e)}")
|
62 |
+
raise ValueError(f"Erro no processamento da imagem: {str(e)}")
|
63 |
+
|
64 |
class NutritionalAnalyzer:
|
65 |
def __init__(self):
|
66 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
67 |
self.models = {}
|
68 |
self.processors = {}
|
69 |
+
self.image_handler = ImageHandler()
|
70 |
|
71 |
def initialize_model(self, model_name):
|
72 |
"""Initialize a specific model with error handling and caching"""
|
|
|
88 |
|
89 |
config = model_configs.get(model_name)
|
90 |
if not config:
|
91 |
+
raise ValueError(f"Modelo não suportado: {model_name}")
|
92 |
|
93 |
# Ensure cache directory exists
|
94 |
os.makedirs(config["local_cache"], exist_ok=True)
|
|
|
123 |
logger.error(f"Error initializing {model_name}: {str(e)}")
|
124 |
return False
|
125 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
def generate_nutritional_prompt(self, user_question):
|
127 |
"""Generate a comprehensive nutritional analysis prompt"""
|
128 |
return f"""Como nutricionista especializado, analise esta refeição detalhadamente:
|
|
|
149 |
def analyze_image(self, image, question, model_choice):
|
150 |
"""Analyze image with nutritional focus"""
|
151 |
try:
|
152 |
+
if image is None:
|
153 |
+
return "Por favor, faça upload de uma imagem para análise."
|
154 |
+
|
155 |
# Convert model choice to internal name
|
156 |
model_name = model_choice.lower().replace("-", "")
|
157 |
|
|
|
159 |
if not self.initialize_model(model_name):
|
160 |
return "Erro: Não foi possível inicializar o modelo. Por favor, tente novamente."
|
161 |
|
162 |
+
# Process image with enhanced error handling
|
163 |
+
try:
|
164 |
+
processed_image = self.image_handler.process_image(image)
|
165 |
+
except ValueError as e:
|
166 |
+
return str(e)
|
167 |
+
except Exception as e:
|
168 |
+
return f"Erro no processamento da imagem: {str(e)}"
|
169 |
+
|
170 |
+
# Generate and process prompt
|
171 |
nutritional_prompt = self.generate_nutritional_prompt(question)
|
172 |
|
173 |
# Process input
|
174 |
+
try:
|
175 |
+
inputs = self.processors[model_name](
|
176 |
+
images=processed_image,
|
177 |
+
text=nutritional_prompt,
|
178 |
+
return_tensors="pt"
|
179 |
+
).to(self.device)
|
180 |
+
except Exception as e:
|
181 |
+
return f"Erro no processamento do modelo: {str(e)}"
|
182 |
|
183 |
# Generate response with enhanced parameters
|
184 |
+
try:
|
185 |
+
with torch.no_grad():
|
186 |
+
outputs = self.models[model_name].generate(
|
187 |
+
**inputs,
|
188 |
+
max_new_tokens=300,
|
189 |
+
num_beams=5,
|
190 |
+
temperature=0.7,
|
191 |
+
top_p=0.9,
|
192 |
+
repetition_penalty=1.2,
|
193 |
+
length_penalty=1.0
|
194 |
+
)
|
195 |
+
|
196 |
+
# Decode and format response
|
197 |
+
response = self.processors[model_name].decode(outputs[0], skip_special_tokens=True)
|
198 |
+
formatted_response = self.format_response(response)
|
199 |
+
|
200 |
+
return formatted_response
|
201 |
|
202 |
+
except Exception as e:
|
203 |
+
return f"Erro na geração da análise: {str(e)}"
|
204 |
|
205 |
except Exception as e:
|
206 |
logger.error(f"Analysis error: {str(e)}")
|
|
|
289 |
2. Capture todos os elementos do prato
|
290 |
3. Evite ângulos muito inclinados
|
291 |
4. Seja específico em suas perguntas
|
292 |
+
5. Formatos de imagem suportados: JPG, PNG, WEBP
|
293 |
""")
|
294 |
|
295 |
analyze_btn.click(
|