DHEIVER commited on
Commit
cefc12a
·
verified ·
1 Parent(s): 87968ae

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +102 -34
app.py CHANGED
@@ -1,64 +1,132 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
 
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
  client = InferenceClient("google/gemma-3-27b-it")
 
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
  def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
 
17
  ):
18
- messages = [{"role": "system", "content": system_message}]
 
 
 
 
 
 
 
 
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
27
 
28
- response = ""
29
 
30
- for message in client.chat_completion(
 
 
 
 
 
 
 
 
 
 
 
 
 
31
  messages,
32
  max_tokens=max_tokens,
33
  stream=True,
34
  temperature=temperature,
35
  top_p=top_p,
36
  ):
37
- token = message.choices[0].delta.content
38
-
39
  response += token
40
  yield response
41
 
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
 
50
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
 
 
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
 
 
 
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ import PyPDF2
4
+ from sentence_transformers import SentenceTransformer
5
+ import numpy as np
6
+ from sklearn.metrics.pairwise import cosine_similarity
7
+ import os
8
+ from typing import List, Tuple
9
 
10
+ # Inicialização do cliente de inferência e modelo de embeddings
 
 
11
  client = InferenceClient("google/gemma-3-27b-it")
12
+ embedder = SentenceTransformer('all-MiniLM-L6-v2')
13
 
14
+ # Classe para gerenciar o conhecimento dos PDFs
15
+ class PDFKnowledgeBase:
16
+ def __init__(self):
17
+ self.documents = []
18
+ self.embeddings = None
19
+
20
+ def load_pdfs(self, pdf_directory: str):
21
+ """Carrega todos os PDFs de um diretório"""
22
+ self.documents = []
23
+ for filename in os.listdir(pdf_directory):
24
+ if filename.endswith('.pdf'):
25
+ pdf_path = os.path.join(pdf_directory, filename)
26
+ with open(pdf_path, 'rb') as file:
27
+ pdf_reader = PyPDF2.PdfReader(file)
28
+ text = ""
29
+ for page in pdf_reader.pages:
30
+ text += page.extract_text() + "\n"
31
+ self.documents.append({
32
+ 'filename': filename,
33
+ 'content': text
34
+ })
35
+
36
+ # Gera embeddings para todos os documentos
37
+ contents = [doc['content'] for doc in self.documents]
38
+ self.embeddings = embedder.encode(contents, convert_to_numpy=True)
39
+
40
+ def get_relevant_context(self, query: str, k: int = 3) -> str:
41
+ """Recupera os k documentos mais relevantes para a query"""
42
+ if self.embeddings is None or len(self.documents) == 0:
43
+ return "Nenhum documento carregado ainda."
44
+
45
+ query_embedding = embedder.encode(query, convert_to_numpy=True)
46
+ similarities = cosine_similarity([query_embedding], self.embeddings)[0]
47
+
48
+ # Obtém os índices dos k documentos mais similares
49
+ top_k_indices = np.argsort(similarities)[-k:][::-1]
50
+
51
+ # Constrói o contexto relevante
52
+ context = ""
53
+ for idx in top_k_indices:
54
+ context += f"Documento: {self.documents[idx]['filename']}\n"
55
+ context += f"Trecho: {self.documents[idx]['content'][:500]}...\n\n"
56
+
57
+ return context
58
+
59
+ # Inicializa a base de conhecimento
60
+ knowledge_base = PDFKnowledgeBase()
61
 
62
  def respond(
63
+ message: str,
64
+ history: List[Tuple[str, str]],
65
+ system_message: str,
66
+ max_tokens: int,
67
+ temperature: float,
68
+ top_p: float,
69
+ pdf_directory: str
70
  ):
71
+ # Carrega os PDFs se ainda não foram carregados
72
+ if not knowledge_base.documents:
73
+ knowledge_base.load_pdfs(pdf_directory)
74
+
75
+ # Obtém contexto relevante da base de conhecimento
76
+ context = knowledge_base.get_relevant_context(message)
77
+
78
+ # Constrói o prompt com o contexto RAG
79
+ rag_prompt = f"""Você é Grok 3, criado por xAI. Use o seguinte contexto dos documentos para responder à pergunta:
80
 
81
+ {context}
 
 
 
 
82
 
83
+ Pergunta do usuário: {message}
84
 
85
+ Responda de forma clara e precisa, utilizando o contexto quando relevante."""
86
 
87
+ messages = [
88
+ {"role": "system", "content": system_message},
89
+ {"role": "user", "content": rag_prompt}
90
+ ]
91
+
92
+ # Adiciona histórico se existir
93
+ for user_msg, assistant_msg in history:
94
+ if user_msg:
95
+ messages.append({"role": "user", "content": user_msg})
96
+ if assistant_msg:
97
+ messages.append({"role": "assistant", "content": assistant_msg})
98
+
99
+ response = ""
100
+ for message_chunk in client.chat_completion(
101
  messages,
102
  max_tokens=max_tokens,
103
  stream=True,
104
  temperature=temperature,
105
  top_p=top_p,
106
  ):
107
+ token = message_chunk.choices[0].delta.content
 
108
  response += token
109
  yield response
110
 
111
+ # Interface do Gradio
 
 
 
112
  demo = gr.ChatInterface(
113
  respond,
114
  additional_inputs=[
115
+ gr.Textbox(value="Você é um assistente útil que responde com base em documentos PDF.",
116
+ label="System message"),
117
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
118
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
119
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05,
120
+ label="Top-p (nucleus sampling)"),
121
+ gr.Textbox(value="./pdfs", label="Diretório dos PDFs"),
 
 
 
 
122
  ],
123
+ title="RAG Chatbot com PDFs",
124
+ description="Faça perguntas e obtenha respostas baseadas em documentos PDF carregados."
125
  )
126
 
 
127
  if __name__ == "__main__":
128
+ # Crie um diretório 'pdfs' e coloque seus PDFs lá
129
+ if not os.path.exists("./pdfs"):
130
+ os.makedirs("./pdfs")
131
+
132
+ demo.launch()