Spaces:
Running
Running
Create app.js
Browse files
app.js
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Access the video and canvas elements
|
2 |
+
const video = document.getElementById('video');
|
3 |
+
const canvas = document.getElementById('outputCanvas');
|
4 |
+
const ctx = canvas.getContext('2d');
|
5 |
+
const status = document.getElementById('status');
|
6 |
+
|
7 |
+
// Initialize the hand pose detection model
|
8 |
+
async function setupHandPoseDetection() {
|
9 |
+
try {
|
10 |
+
// Load the hand pose detection model
|
11 |
+
const model = handPoseDetection.SupportedModels.MediaPipeHands;
|
12 |
+
const detectorConfig = {
|
13 |
+
runtime: 'tfjs', // Use TensorFlow.js runtime
|
14 |
+
modelType: 'full' // Choose between 'lite' or 'full'
|
15 |
+
};
|
16 |
+
const detector = await handPoseDetection.createDetector(model, detectorConfig);
|
17 |
+
|
18 |
+
status.textContent = 'Model loaded!';
|
19 |
+
|
20 |
+
// Start video stream
|
21 |
+
await setupCamera();
|
22 |
+
|
23 |
+
// Detect hands in real-time
|
24 |
+
detectHands(detector);
|
25 |
+
} catch (error) {
|
26 |
+
console.error('Error loading the model:', error);
|
27 |
+
status.textContent = 'Failed to load model.';
|
28 |
+
}
|
29 |
+
}
|
30 |
+
|
31 |
+
// Set up the camera feed
|
32 |
+
async function setupCamera() {
|
33 |
+
const stream = await navigator.mediaDevices.getUserMedia({ video: true });
|
34 |
+
video.srcObject = stream;
|
35 |
+
return new Promise((resolve) => {
|
36 |
+
video.onloadedmetadata = () => {
|
37 |
+
resolve(video);
|
38 |
+
};
|
39 |
+
});
|
40 |
+
}
|
41 |
+
|
42 |
+
// Detect hands and draw keypoints
|
43 |
+
async function detectHands(detector) {
|
44 |
+
if (video.readyState === video.HAVE_ENOUGH_DATA) {
|
45 |
+
// Clear the canvas
|
46 |
+
ctx.clearRect(0, 0, canvas.width, canvas.height);
|
47 |
+
|
48 |
+
// Detect hands in the video frame
|
49 |
+
const hands = await detector.estimateHands(video);
|
50 |
+
|
51 |
+
// Draw keypoints on the canvas
|
52 |
+
if (hands.length > 0) {
|
53 |
+
hands.forEach((hand) => {
|
54 |
+
const keypoints = hand.keypoints;
|
55 |
+
keypoints.forEach((keypoint) => {
|
56 |
+
const { x, y } = keypoint;
|
57 |
+
ctx.beginPath();
|
58 |
+
ctx.arc(x, y, 5, 0, 2 * Math.PI); // Draw a circle at each keypoint
|
59 |
+
ctx.fillStyle = 'red';
|
60 |
+
ctx.fill();
|
61 |
+
});
|
62 |
+
});
|
63 |
+
}
|
64 |
+
}
|
65 |
+
|
66 |
+
// Repeat detection
|
67 |
+
requestAnimationFrame(() => detectHands(detector));
|
68 |
+
}
|
69 |
+
|
70 |
+
// Initialize the application
|
71 |
+
setupHandPoseDetection();
|