Spaces:
Sleeping
Sleeping
import gradio as gr | |
import tensorflow as tf | |
import numpy as np | |
# Load your trained TensorFlow model | |
model = tf.keras.models.load_model('modelo_treinado.h5') # Load your saved model | |
# Define a function to make predictions | |
def classify_image(input_image): | |
# Preprocess the input image (resize and normalize) | |
input_image = tf.image.resize(input_image, (224, 224)) # Make sure to match your model's input size | |
input_image = (input_image / 255.0) # Normalize to [0, 1] | |
input_image = np.expand_dims(input_image, axis=0) # Add batch dimension | |
# Make a prediction using your model | |
prediction = model.predict(input_image) | |
# Assuming your model outputs probabilities for two classes, you can return the class with the highest probability | |
class_index = np.argmax(prediction) | |
class_labels = ["Normal", "Cataract"] # Replace with your actual class labels | |
predicted_class = class_labels[class_index] | |
return predicted_class | |
# Create a Gradio interface | |
input_interface = gr.Interface( | |
fn=classify_image, | |
inputs="image", # Specify input type as "image" | |
outputs="text" # Specify output type as "text" | |
) | |
# Launch the Gradio app | |
input_interface.launch() | |