Pneumonia / app.py
DHEIVER's picture
Update app.py
8af09bd
raw
history blame
1.84 kB
import gradio as gr
import numpy as np
import cv2
import tensorflow as tf
# Load the model
model = tf.keras.models.load_model('model.h5')
def preprocess_image(image):
resized_img = cv2.resize(image, (180, 180))
img_array = np.array(resized_img).reshape((1, 180, 180, 3))
return img_array
def predict_pneumonia(image):
img_array = preprocess_image(image)
prediction = model.predict(img_array)[0][0]
# Use a more robust threshold for determining whether an image has pneumonia
threshold = 0.5
if prediction >= threshold:
pneumonia_prediction = 1
else:
pneumonia_prediction = 0
# Return the probability of each class
class_probabilities = np.array(model.predict(img_array))
# Return the top two possible classifications
top_classes = np.argsort(class_probabilities[0])[-2:]
# Return the class names and the confidence scores for each class
class_names = ["Pneumonia", "Normal"]
confidence_scores = class_probabilities[0]
return {
"Pneumonia": pneumonia_prediction,
"Class probabilities": class_probabilities,
"Top classes": top_classes,
"Class names": class_names,
"Confidence scores": confidence_scores
}
inputs = gr.inputs.Image(shape=(180, 180))
outputs = gr.outputs.Label(num_top_classes=2)
gradio_interface = gr.Interface(
fn=predict_pneumonia,
inputs=inputs,
outputs=outputs,
title="Pneumonia X-Ray Classification API",
description="This API classifies images of chest X-rays as having pneumonia or being normal.",
examples=[
["person1946_bacteria_4875.jpeg"],
["person1952_bacteria_4883.jpeg"],
["NORMAL2-IM-1427-0001.jpeg"],
["NORMAL2-IM-1431-0001.jpeg"]
],
theme="default",
allow_flagging=False
)
gradio_interface.launch()