Pneumonia / app.py
DHEIVER's picture
Update app.py
774e216
raw
history blame
2.4 kB
import gradio as gr
import os
import torch
from PIL import Image
from model import ResNet101
from timeit import default_timer as timer
from typing import Tuple, Dict
# setup class names
class_names = ["normal", "pneumonia"]
# 2. Model and transforms preparation #
model = ResNet101()
# Load saved weights
model.load_state_dict(torch.load(f="resnet101_pneumonia.pt",
map_location=torch.device("cpu")))
model_transforms = model.transforms()
# 3. Predict function #
def predict(img) -> Tuple[Dict, float]:
"""
Transforms and performs a prediction on img and returns prediction and time taken.
:param img: PIL image
:return: prediction and time taken
"""
# start the timer
start_time = timer()
# transform target image and add batch dimension
img = model_transforms(img.convert("RGB")).unsqueeze(0)
# put model into evaluation mode and disable gradient calculation
model.eval()
with torch.no_grad():
# pass the transformed image through the model
# and turn the prediction logits into prediction probabilities
pred_probs = torch.sigmoid(model(img))
# create a prediction label and prediction probability for each class
pred_labels_and_probs = {class_names[0]: round (1 - float(pred_probs[0])), 4),
class_names[1]: round(float(pred_probs[0]), 4)}
# calculate the prediction time
pred_time = round(timer() - start_time, 5)
# return the prediction dictionary and prediction time
return pred_labels_and_probs, pred_time
# 4. Gradio app #
# Create title, description, and article strings
title = "PneumoniaDetector πŸ‘"
description = "A ResNet101 feature extractor computer vision model to detect pneumonia"
article = "Please add a chest X-Ray image"
# create examples list from "examples/" directory
example_list = [["examples/" + example] for example in os.listdir("examples")]
# create the Gradio demo
demo = gr.Interface(fn=predict,
inputs=gr.Image(type="pil"),
outputs=[gr.Label(num_top_classes=1, label="Predictions"),
gr.Number(label="Prediction time (s)")],
examples=example_list,
title=title,
description=description,
article=article)
demo.launch(share=True, debug=True)