DHEIVER commited on
Commit
652d09f
1 Parent(s): f439bce

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -22
app.py CHANGED
@@ -1,36 +1,39 @@
1
- import tensorflow as tf
2
- import keras
3
  import gradio as gr
4
  import numpy as np
5
  import cv2
6
- import os
7
 
8
- model=tf.keras.models.load_model('model.h5')
 
9
 
10
- def predict_pneumonia(image):
11
  resized_img = cv2.resize(image, (180, 180))
12
- img_array = np.array(resized_img).reshape((1, 180, 180, 3))
 
13
 
 
 
14
  prediction = model.predict(img_array)[0][0]
15
- pneumonia_percent = prediction*1
16
- normal_percent = (1 - prediction)*1
17
- return {"Pneumonia ": pneumonia_percent, "Normal ": normal_percent}
18
 
19
  inputs = gr.inputs.Image(shape=(180, 180))
20
  outputs = gr.outputs.Label(num_top_classes=2)
21
- gradio_interface = gr.Interface(fn=predict_pneumonia, inputs=inputs, outputs=outputs,
22
- title="Classification of pneumonia in chest X-ray",
23
- #description = "A simple app to classify chest X-ray images into normal and pneumonia and show the percentage of each",
24
- examples = ["person1946_bacteria_4875.jpeg", "person1952_bacteria_4883.jpeg", "NORMAL2-IM-1427-0001.jpeg", "NORMAL2-IM-1431-0001.jpeg"],
25
- article = "<p style='text-align: center'>Lior Cohen & Arad Peleg | Final Project 2023</p>"
26
- "<p style='text-align: center'>Supervisor: Dr. Dima Alberg</p>",
27
- theme = gr.themes.Monochrome(),)
28
 
29
- # gr.themes.Soft() 讻讞讜诇
30
- # gr.themes.Monochrome() 砖讞讜专
31
- # gr.themes.Glass() 讗驻讜专
 
 
 
 
 
 
 
 
 
 
 
32
 
33
  gradio_interface.launch()
34
- # share=True
35
- # live=True
36
- # enable_queue=True
 
 
 
1
  import gradio as gr
2
  import numpy as np
3
  import cv2
4
+ import tensorflow as tf
5
 
6
+ # Carregar o modelo
7
+ model = tf.keras.models.load_model('model.h5')
8
 
9
+ def preprocess_image(image):
10
  resized_img = cv2.resize(image, (180, 180))
11
+ img_array = np.array(resized_img).reshape((1, 180, 180, 3))
12
+ return img_array
13
 
14
+ def predict_pneumonia(image):
15
+ img_array = preprocess_image(image)
16
  prediction = model.predict(img_array)[0][0]
17
+ pneumonia_percent = prediction * 100
18
+ normal_percent = (1 - prediction) * 100
19
+ return {"Pneumonia": pneumonia_percent, "Normal": normal_percent}
20
 
21
  inputs = gr.inputs.Image(shape=(180, 180))
22
  outputs = gr.outputs.Label(num_top_classes=2)
 
 
 
 
 
 
 
23
 
24
+ gradio_interface = gr.Interface(
25
+ fn=predict_pneumonia,
26
+ inputs=inputs,
27
+ outputs=outputs,
28
+ title="Classifica莽茫o de Pneumonia em Raios-X de T贸rax",
29
+ description="Esta aplica莽茫o classifica imagens de raios-X de t贸rax em pneumonia e normal.",
30
+ examples=[
31
+ ["person1946_bacteria_4875.jpeg"],
32
+ ["person1952_bacteria_4883.jpeg"],
33
+ ["NORMAL2-IM-1427-0001.jpeg"],
34
+ ["NORMAL2-IM-1431-0001.jpeg"]
35
+ ],
36
+ theme="default"
37
+ )
38
 
39
  gradio_interface.launch()