Create model.py
Browse files
model.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Builds Pytorch model
|
3 |
+
"""
|
4 |
+
import torch
|
5 |
+
import torchvision.models
|
6 |
+
from torch import nn
|
7 |
+
|
8 |
+
|
9 |
+
class ResNet101(nn.Module):
|
10 |
+
"""
|
11 |
+
ResNet101 model specified for the binary problem. The according transforms were taken from pytorch.org.
|
12 |
+
"""
|
13 |
+
|
14 |
+
def __init__(self):
|
15 |
+
super().__init__()
|
16 |
+
self.weights = torchvision.models.ResNet101_Weights.DEFAULT
|
17 |
+
self.transforms = self.weights.transforms
|
18 |
+
self.resnet = torchvision.models.resnet101(weights=self.weights)
|
19 |
+
|
20 |
+
for param in self.resnet.parameters():
|
21 |
+
param.requires_grad = False
|
22 |
+
|
23 |
+
self.resnet.fc = nn.Linear(in_features=2048, out_features=1)
|
24 |
+
|
25 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
26 |
+
x = self.resnet(x)
|
27 |
+
return x
|