DHEIVER commited on
Commit
ffb6da3
1 Parent(s): 0318e93

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -5
app.py CHANGED
@@ -18,7 +18,7 @@ def predict_pneumonia(image):
18
  prediction = model.predict(img_array)[0][0]
19
 
20
  # Use a more robust threshold for determining whether an image has pneumonia
21
- threshold = 0.7
22
 
23
  if prediction >= threshold:
24
  pneumonia_prediction = 1
@@ -31,13 +31,18 @@ def predict_pneumonia(image):
31
  # Return the top two possible classifications
32
  top_classes = model.predict_classes(img_array)
33
 
 
 
 
 
34
  return {
35
  "Pneumonia": pneumonia_prediction,
36
  "Class probabilities": class_probabilities,
37
- "Top classes": top_classes
 
 
38
  }
39
 
40
-
41
  inputs = gr.inputs.Image(shape=(180, 180))
42
  outputs = gr.outputs.Label(num_top_classes=2)
43
 
@@ -45,8 +50,8 @@ gradio_interface = gr.Interface(
45
  fn=predict_pneumonia,
46
  inputs=inputs,
47
  outputs=outputs,
48
- title="Classifica莽茫o de Pneumonia em Raios-X de T贸rax",
49
- description="Esta aplica莽茫o classifica imagens de raios-X de t贸rax em pneumonia e normal.",
50
  examples=[
51
  ["person1946_bacteria_4875.jpeg"],
52
  ["person1952_bacteria_4883.jpeg"],
@@ -54,6 +59,8 @@ gradio_interface = gr.Interface(
54
  ["NORMAL2-IM-1431-0001.jpeg"]
55
  ],
56
  theme="default",
 
57
  )
58
 
 
59
  gradio_interface.launch()
 
18
  prediction = model.predict(img_array)[0][0]
19
 
20
  # Use a more robust threshold for determining whether an image has pneumonia
21
+ threshold = 0.5
22
 
23
  if prediction >= threshold:
24
  pneumonia_prediction = 1
 
31
  # Return the top two possible classifications
32
  top_classes = model.predict_classes(img_array)
33
 
34
+ # Return the class names and the confidence scores for each class
35
+ class_names = ["Pneumonia", "Normal"]
36
+ confidence_scores = class_probabilities
37
+
38
  return {
39
  "Pneumonia": pneumonia_prediction,
40
  "Class probabilities": class_probabilities,
41
+ "Top classes": top_classes,
42
+ "Class names": class_names,
43
+ "Confidence scores": confidence_scores
44
  }
45
 
 
46
  inputs = gr.inputs.Image(shape=(180, 180))
47
  outputs = gr.outputs.Label(num_top_classes=2)
48
 
 
50
  fn=predict_pneumonia,
51
  inputs=inputs,
52
  outputs=outputs,
53
+ title="Pneumonia X-Ray Classification API",
54
+ description="This API classifies images of chest X-rays as having pneumonia or being normal.",
55
  examples=[
56
  ["person1946_bacteria_4875.jpeg"],
57
  ["person1952_bacteria_4883.jpeg"],
 
59
  ["NORMAL2-IM-1431-0001.jpeg"]
60
  ],
61
  theme="default",
62
+ allow_uploads=True
63
  )
64
 
65
+
66
  gradio_interface.launch()