import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import gradio as gr import numpy as np import cv2 import tensorflow as tf # Load the model model = tf.keras.models.load_model('model.h5') def preprocess_image(image): resized_img = cv2.resize(image, (180, 180)) img_array = np.array(resized_img).reshape((1, 180, 180, 3)) return img_array def predict_pneumonia(image): img_array = preprocess_image(image) prediction = model.predict(img_array)[0][0] # Use a more robust threshold for determining whether an image has pneumonia threshold = 0.5 if prediction >= threshold: return "Pneumonia" else: return "Normal" inputs = gr.inputs.Image(shape=(180, 180)) outputs = gr.outputs.Label(num_top_classes=2) gradio_interface = gr.Interface( fn=predict_pneumonia, inputs=inputs, outputs=outputs, title="Pneumonia X-Ray Classification API", description="This API classifies images of chest X-rays as having pneumonia or being normal.", examples=[ ["person1000_bacteria_2931.jpeg"], ["person1000_virus_1681.jpeg"], ["person1946_bacteria_4875.jpeg"], ["person1952_bacteria_4883.jpeg"], ["NORMAL2-IM-1427-0001.jpeg"] ], theme="default", allow_flagging=False ) gradio_interface.launch()