Spaces:
Runtime error
Runtime error
File size: 7,488 Bytes
2cd2236 aff3623 2cd2236 aff3623 e99a086 2cd2236 9e64b5c aff3623 2cd2236 aff3623 2cd2236 9e64b5c aff3623 2cd2236 9e64b5c 2cd2236 9e64b5c e99a086 9e64b5c e99a086 1b66eea e99a086 1b66eea e99a086 2cd2236 b3fe8b2 aff3623 9e64b5c aff3623 9e64b5c 1b66eea 9e64b5c 1b66eea 9e64b5c 1b66eea 9e64b5c 4d0dad8 e99a086 4d0dad8 e99a086 4d0dad8 9e64b5c 4d0dad8 e99a086 4d0dad8 e99a086 4d0dad8 e99a086 4d0dad8 e99a086 4d0dad8 9e64b5c e99a086 2cd2236 4d0dad8 e99a086 9e64b5c 68abcc8 e99a086 68abcc8 9e64b5c e99a086 9e64b5c e99a086 68abcc8 9e64b5c e99a086 9e64b5c e99a086 2cd2236 9e64b5c 2cd2236 9e64b5c 68abcc8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import os
from collections.abc import Iterator
from threading import Thread
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from PIL import Image
import uuid
import io
# Text-only model setup
DESCRIPTION = """
# GWQ PREV
"""
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_id = "prithivMLmods/GWQ2b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
)
model.config.sliding_window = 4096
model.eval()
# Multimodal model setup
MULTIMODAL_MODEL_ID = "Qwen/Qwen2-VL-2B-Instruct"
multimodal_model = Qwen2VLForConditionalGeneration.from_pretrained(
MULTIMODAL_MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.float16
).to("cuda").eval()
multimodal_processor = AutoProcessor.from_pretrained(MULTIMODAL_MODEL_ID, trust_remote_code=True)
image_extensions = Image.registered_extensions()
def identify_and_save_image(blob_path):
"""Identifies if the blob is an image and saves it accordingly."""
try:
with open(blob_path, 'rb') as file:
blob_content = file.read()
# Try to identify if it's an image
try:
Image.open(io.BytesIO(blob_content)).verify() # Check if it's a valid image
extension = ".png" # Default to PNG for saving
media_type = "image"
except (IOError, SyntaxError):
raise ValueError("Unsupported media type. Please upload an image.")
# Create a unique filename
filename = f"temp_{uuid.uuid4()}_media{extension}"
with open(filename, "wb") as f:
f.write(blob_content)
return filename, media_type
except FileNotFoundError:
raise ValueError(f"The file {blob_path} was not found.")
except Exception as e:
raise ValueError(f"An error occurred while processing the file: {e}")
@spaces.GPU()
def generate(
message: str,
chat_history: list[dict],
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
files: list = None,
) -> Iterator[str]:
if files and len(files) > 0:
# Multimodal input (image only)
media_path = files[0]
if media_path.endswith(tuple([i for i, f in image_extensions.items()])):
media_type = "image"
else:
try:
media_path, media_type = identify_and_save_image(media_path)
except Exception as e:
raise ValueError("Unsupported media type. Please upload an image.")
# Load the image
image = Image.open(media_path).convert("RGB")
# Prepare the input for the multimodal model
messages = [
{
"role": "user",
"content": [
{"image": media_path}, # Pass the image path
{"text": message}, # Pass the text prompt
],
}
]
# Process the input
inputs = multimodal_processor(
messages,
return_tensors="pt",
padding=True,
).to("cuda")
# Stream the output
streamer = TextIteratorStreamer(
multimodal_processor, skip_prompt=True, skip_special_tokens=True
)
generation_kwargs = dict(
inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty,
)
# Start the generation in a separate thread
thread = Thread(target=multimodal_model.generate, kwargs=generation_kwargs)
thread.start()
# Stream the output token by token
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
else:
# Text-only input
# Ensure the chat history alternates between user and assistant roles
conversation = []
for i, entry in enumerate(chat_history):
if i % 2 == 0:
conversation.append({"role": "user", "content": entry["content"]})
else:
conversation.append({"role": "assistant", "content": entry["content"]})
conversation.append({"role": "user", "content": message})
# Apply the chat template
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
# Stream the output
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
demo = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.6,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2,
),
],
stop_btn=None,
examples=[
["Hello there! How are you doing?"],
["Can you explain briefly to me what is the Python programming language?"],
["Explain the plot of Cinderella in a sentence."],
["How many hours does it take a man to eat a Helicopter?"],
["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
],
cache_examples=False,
type="messages",
description=DESCRIPTION,
css_paths="style.css",
fill_height=True,
multimodal=True,
textbox=gr.MultimodalTextbox(),
)
if __name__ == "__main__":
demo.queue(max_size=20).launch(share=True) |