Update app.py
Browse files
app.py
CHANGED
|
@@ -41,23 +41,28 @@ def create_db(splits):
|
|
| 41 |
return vectordb
|
| 42 |
|
| 43 |
|
|
|
|
|
|
|
|
|
|
| 44 |
# Initialize langchain LLM chain
|
| 45 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
| 46 |
if llm_model == "meta-llama/Meta-Llama-3-8B-Instruct":
|
| 47 |
llm = HuggingFaceEndpoint(
|
| 48 |
repo_id=llm_model,
|
| 49 |
-
huggingfacehub_api_token
|
| 50 |
-
temperature
|
| 51 |
-
max_new_tokens
|
| 52 |
-
top_k
|
|
|
|
| 53 |
)
|
| 54 |
else:
|
| 55 |
llm = HuggingFaceEndpoint(
|
| 56 |
-
huggingfacehub_api_token
|
| 57 |
-
repo_id=llm_model,
|
| 58 |
-
temperature
|
| 59 |
-
max_new_tokens
|
| 60 |
-
top_k
|
|
|
|
| 61 |
)
|
| 62 |
|
| 63 |
memory = ConversationBufferMemory(
|
|
@@ -66,7 +71,7 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
| 66 |
return_messages=True
|
| 67 |
)
|
| 68 |
|
| 69 |
-
retriever=vector_db.as_retriever()
|
| 70 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
| 71 |
llm,
|
| 72 |
retriever=retriever,
|
|
@@ -76,7 +81,7 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
| 76 |
verbose=False,
|
| 77 |
)
|
| 78 |
return qa_chain
|
| 79 |
-
|
| 80 |
# Initialize database
|
| 81 |
def initialize_database(list_file_obj, progress=gr.Progress()):
|
| 82 |
# Create a list of documents (when valid)
|
|
|
|
| 41 |
return vectordb
|
| 42 |
|
| 43 |
|
| 44 |
+
# Initialize langchain LLM chain
|
| 45 |
+
from langchain_community.llms import HuggingFaceEndpoint
|
| 46 |
+
|
| 47 |
# Initialize langchain LLM chain
|
| 48 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
| 49 |
if llm_model == "meta-llama/Meta-Llama-3-8B-Instruct":
|
| 50 |
llm = HuggingFaceEndpoint(
|
| 51 |
repo_id=llm_model,
|
| 52 |
+
huggingfacehub_api_token=api_token,
|
| 53 |
+
temperature=temperature,
|
| 54 |
+
max_new_tokens=max_tokens,
|
| 55 |
+
top_k=top_k,
|
| 56 |
+
task="text-generation" # Explicitly specify the task type
|
| 57 |
)
|
| 58 |
else:
|
| 59 |
llm = HuggingFaceEndpoint(
|
| 60 |
+
huggingfacehub_api_token=api_token,
|
| 61 |
+
repo_id=llm_model,
|
| 62 |
+
temperature=temperature,
|
| 63 |
+
max_new_tokens=max_tokens,
|
| 64 |
+
top_k=top_k,
|
| 65 |
+
task="text-generation" # Explicitly specify the task type
|
| 66 |
)
|
| 67 |
|
| 68 |
memory = ConversationBufferMemory(
|
|
|
|
| 71 |
return_messages=True
|
| 72 |
)
|
| 73 |
|
| 74 |
+
retriever = vector_db.as_retriever()
|
| 75 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
| 76 |
llm,
|
| 77 |
retriever=retriever,
|
|
|
|
| 81 |
verbose=False,
|
| 82 |
)
|
| 83 |
return qa_chain
|
| 84 |
+
|
| 85 |
# Initialize database
|
| 86 |
def initialize_database(list_file_obj, progress=gr.Progress()):
|
| 87 |
# Create a list of documents (when valid)
|