Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -13,6 +13,10 @@ from langchain_community.llms import HuggingFaceEndpoint
|
|
13 |
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"]
|
14 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
15 |
|
|
|
|
|
|
|
|
|
16 |
# Load and split PDF document
|
17 |
def load_doc(list_file_path):
|
18 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
@@ -45,8 +49,8 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
45 |
temperature=temperature,
|
46 |
max_new_tokens=max_tokens,
|
47 |
top_k=top_k,
|
48 |
-
timeout=120,
|
49 |
-
max_retries=3
|
50 |
)
|
51 |
else:
|
52 |
llm = HuggingFaceEndpoint(
|
@@ -85,8 +89,6 @@ def format_chat_history(message, chat_history):
|
|
85 |
|
86 |
def conversation(qa_chain, message, history, language):
|
87 |
formatted_chat_history = format_chat_history(message, history)
|
88 |
-
|
89 |
-
# Ajustar o prompt com instrução de idioma
|
90 |
if language == "Português":
|
91 |
prompt = f"Responda em português: {message}"
|
92 |
else:
|
@@ -118,45 +120,78 @@ def conversation(qa_chain, message, history, language):
|
|
118 |
new_history = history + [(message, response_answer)]
|
119 |
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
def demo():
|
122 |
with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue="sky")) as demo:
|
|
|
123 |
vector_db = gr.State()
|
124 |
qa_chain = gr.State()
|
125 |
-
gr.
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
db_btn.click(initialize_database, inputs=[document], outputs=[vector_db, db_progress])
|
161 |
qachain_btn.click(initialize_LLM, inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], outputs=[qa_chain, llm_progress]).then(
|
162 |
lambda: [None, "", 0, "", 0, "", 0], inputs=None, outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False
|
|
|
13 |
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"]
|
14 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
15 |
|
16 |
+
# Simulated user credentials (replace with a secure method in production)
|
17 |
+
VALID_USERNAME = "admin"
|
18 |
+
VALID_PASSWORD = "password123"
|
19 |
+
|
20 |
# Load and split PDF document
|
21 |
def load_doc(list_file_path):
|
22 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
|
|
49 |
temperature=temperature,
|
50 |
max_new_tokens=max_tokens,
|
51 |
top_k=top_k,
|
52 |
+
timeout=120,
|
53 |
+
max_retries=3
|
54 |
)
|
55 |
else:
|
56 |
llm = HuggingFaceEndpoint(
|
|
|
89 |
|
90 |
def conversation(qa_chain, message, history, language):
|
91 |
formatted_chat_history = format_chat_history(message, history)
|
|
|
|
|
92 |
if language == "Português":
|
93 |
prompt = f"Responda em português: {message}"
|
94 |
else:
|
|
|
120 |
new_history = history + [(message, response_answer)]
|
121 |
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
122 |
|
123 |
+
# Login function
|
124 |
+
def check_login(username, password):
|
125 |
+
if username == VALID_USERNAME and password == VALID_PASSWORD:
|
126 |
+
return True, "Login successful! Access the chatbot below."
|
127 |
+
else:
|
128 |
+
return False, "Invalid username or password. Please try again."
|
129 |
+
|
130 |
+
# Main demo with login
|
131 |
def demo():
|
132 |
with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue="sky")) as demo:
|
133 |
+
# State variables
|
134 |
vector_db = gr.State()
|
135 |
qa_chain = gr.State()
|
136 |
+
logged_in = gr.State(value=False)
|
137 |
+
|
138 |
+
# Login interface
|
139 |
+
with gr.Column(visible=True) as login_col:
|
140 |
+
gr.HTML("<center><h1>RAG PDF Chatbot - Login</h1></center>")
|
141 |
+
username = gr.Textbox(label="Username", placeholder="Enter username")
|
142 |
+
password = gr.Textbox(label="Password", type="password", placeholder="Enter password")
|
143 |
+
login_btn = gr.Button("Login")
|
144 |
+
login_message = gr.Textbox(value="Please log in to access the chatbot.", show_label=False)
|
145 |
+
|
146 |
+
# Chatbot interface (hidden until login)
|
147 |
+
with gr.Column(visible=False) as chatbot_col:
|
148 |
+
gr.HTML("<center><h1>RAG PDF Chatbot</h1></center>")
|
149 |
+
gr.Markdown("""<b>Query your PDF documents!</b> This AI agent is designed to perform retrieval augmented generation (RAG) on PDF documents. \
|
150 |
+
<b>Please do not upload confidential documents.</b>""")
|
151 |
+
|
152 |
+
with gr.Row():
|
153 |
+
with gr.Column(scale=86):
|
154 |
+
gr.Markdown("<b>Step 1 - Upload PDF documents and Initialize RAG pipeline</b>")
|
155 |
+
document = gr.Files(height=300, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload PDF documents")
|
156 |
+
db_btn = gr.Button("Create vector database")
|
157 |
+
db_progress = gr.Textbox(value="Not initialized", show_label=False)
|
158 |
+
gr.Markdown("<b>Select Large Language Model (LLM) and input parameters</b>")
|
159 |
+
llm_btn = gr.Radio(list_llm_simple, label="Available LLMs", value=list_llm_simple[0], type="index")
|
160 |
+
with gr.Accordion("LLM input parameters", open=False):
|
161 |
+
slider_temperature = gr.Slider(minimum=0.01, maximum=1.0, value=0.5, step=0.1, label="Temperature", interactive=True)
|
162 |
+
slider_maxtokens = gr.Slider(minimum=128, maximum=9192, value=4096, step=128, label="Max New Tokens", interactive=True)
|
163 |
+
slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k", interactive=True)
|
164 |
+
qachain_btn = gr.Button("Initialize Question Answering Chatbot")
|
165 |
+
llm_progress = gr.Textbox(value="Not initialized", show_label=False)
|
166 |
+
|
167 |
+
with gr.Column(scale=200):
|
168 |
+
gr.Markdown("<b>Step 2 - Chat with your Document</b>")
|
169 |
+
language_selector = gr.Radio(["English", "Português"], label="Select Language", value="English")
|
170 |
+
chatbot = gr.Chatbot(height=505)
|
171 |
+
with gr.Accordion("Relevant context from the source document", open=False):
|
172 |
+
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
|
173 |
+
source1_page = gr.Number(label="Page", scale=1)
|
174 |
+
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
|
175 |
+
source2_page = gr.Number(label="Page", scale=1)
|
176 |
+
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
|
177 |
+
source3_page = gr.Number(label="Page", scale=1)
|
178 |
+
msg = gr.Textbox(placeholder="Ask a question", container=True)
|
179 |
+
submit_btn = gr.Button("Submit")
|
180 |
+
clear_btn = gr.ClearButton([msg, chatbot], value="Clear")
|
181 |
+
|
182 |
+
# Login event
|
183 |
+
login_btn.click(
|
184 |
+
fn=check_login,
|
185 |
+
inputs=[username, password],
|
186 |
+
outputs=[logged_in, login_message]
|
187 |
+
).then(
|
188 |
+
fn=lambda logged: (gr.update(visible=not logged), gr.update(visible=logged)),
|
189 |
+
inputs=[logged_in],
|
190 |
+
outputs=[login_col, chatbot_col],
|
191 |
+
queue=False
|
192 |
+
)
|
193 |
+
|
194 |
+
# Preprocessing events (only accessible after login)
|
195 |
db_btn.click(initialize_database, inputs=[document], outputs=[vector_db, db_progress])
|
196 |
qachain_btn.click(initialize_LLM, inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], outputs=[qa_chain, llm_progress]).then(
|
197 |
lambda: [None, "", 0, "", 0, "", 0], inputs=None, outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False
|