Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,35 +1,29 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
-
api_token = os.getenv("HF_TOKEN")
|
4 |
-
|
5 |
|
6 |
from langchain_community.vectorstores import FAISS
|
7 |
from langchain_community.document_loaders import PyPDFLoader
|
8 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
9 |
-
from langchain_community.vectorstores import Chroma
|
10 |
from langchain.chains import ConversationalRetrievalChain
|
11 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
12 |
from langchain_community.llms import HuggingFacePipeline
|
13 |
-
from langchain.chains import ConversationChain
|
14 |
from langchain.memory import ConversationBufferMemory
|
15 |
-
from langchain_community.llms import HuggingFaceEndpoint
|
16 |
import torch
|
|
|
17 |
|
18 |
-
|
|
|
19 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
20 |
|
21 |
# Load and split PDF document
|
22 |
def load_doc(list_file_path):
|
23 |
-
# Processing for one document only
|
24 |
-
# loader = PyPDFLoader(file_path)
|
25 |
-
# pages = loader.load()
|
26 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
27 |
pages = []
|
28 |
for loader in loaders:
|
29 |
pages.extend(loader.load())
|
30 |
text_splitter = RecursiveCharacterTextSplitter(
|
31 |
-
chunk_size
|
32 |
-
chunk_overlap
|
33 |
)
|
34 |
doc_splits = text_splitter.split_documents(pages)
|
35 |
return doc_splits
|
@@ -40,33 +34,40 @@ def create_db(splits):
|
|
40 |
vectordb = FAISS.from_documents(splits, embeddings)
|
41 |
return vectordb
|
42 |
|
43 |
-
|
44 |
-
# Initialize langchain LLM chain
|
45 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
memory = ConversationBufferMemory(
|
64 |
memory_key="chat_history",
|
65 |
-
output_key=
|
66 |
return_messages=True
|
67 |
)
|
68 |
|
69 |
-
retriever=vector_db.as_retriever()
|
70 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
71 |
llm,
|
72 |
retriever=retriever,
|
@@ -79,34 +80,27 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
79 |
|
80 |
# Initialize database
|
81 |
def initialize_database(list_file_obj, progress=gr.Progress()):
|
82 |
-
# Create a list of documents (when valid)
|
83 |
list_file_path = [x.name for x in list_file_obj if x is not None]
|
84 |
-
# Load document and create splits
|
85 |
doc_splits = load_doc(list_file_path)
|
86 |
-
# Create or load vector database
|
87 |
vector_db = create_db(doc_splits)
|
88 |
return vector_db, "Database created!"
|
89 |
|
90 |
# Initialize LLM
|
91 |
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
92 |
-
# print("llm_option",llm_option)
|
93 |
llm_name = list_llm[llm_option]
|
94 |
-
print("llm_name: ",llm_name)
|
95 |
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
|
96 |
return qa_chain, "QA chain initialized. Chatbot is ready!"
|
97 |
|
98 |
-
|
99 |
def format_chat_history(message, chat_history):
|
100 |
formatted_chat_history = []
|
101 |
for user_message, bot_message in chat_history:
|
102 |
formatted_chat_history.append(f"User: {user_message}")
|
103 |
formatted_chat_history.append(f"Assistant: {bot_message}")
|
104 |
return formatted_chat_history
|
105 |
-
|
106 |
|
107 |
def conversation(qa_chain, message, history):
|
108 |
formatted_chat_history = format_chat_history(message, history)
|
109 |
-
# Generate response using QA chain
|
110 |
response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
|
111 |
response_answer = response["answer"]
|
112 |
if response_answer.find("Helpful Answer:") != -1:
|
@@ -115,14 +109,11 @@ def conversation(qa_chain, message, history):
|
|
115 |
response_source1 = response_sources[0].page_content.strip()
|
116 |
response_source2 = response_sources[1].page_content.strip()
|
117 |
response_source3 = response_sources[2].page_content.strip()
|
118 |
-
# Langchain sources are zero-based
|
119 |
response_source1_page = response_sources[0].metadata["page"] + 1
|
120 |
response_source2_page = response_sources[1].metadata["page"] + 1
|
121 |
response_source3_page = response_sources[2].metadata["page"] + 1
|
122 |
-
# Append user message and response to chat history
|
123 |
new_history = history + [(message, response_answer)]
|
124 |
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
125 |
-
|
126 |
|
127 |
def upload_file(file_obj):
|
128 |
list_file_path = []
|
@@ -131,45 +122,43 @@ def upload_file(file_obj):
|
|
131 |
list_file_path.append(file_path)
|
132 |
return list_file_path
|
133 |
|
134 |
-
|
135 |
def demo():
|
136 |
-
|
137 |
-
with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue = "sky")) as demo:
|
138 |
vector_db = gr.State()
|
139 |
qa_chain = gr.State()
|
140 |
gr.HTML("<center><h1>RAG PDF chatbot</h1><center>")
|
141 |
-
gr.Markdown("""<b>Query your PDF documents!</b> This AI agent is designed to perform retrieval augmented generation (RAG) on PDF documents.
|
142 |
<b>Please do not upload confidential documents.</b>
|
143 |
""")
|
144 |
with gr.Row():
|
145 |
-
with gr.Column(scale
|
146 |
gr.Markdown("<b>Step 1 - Upload PDF documents and Initialize RAG pipeline</b>")
|
147 |
with gr.Row():
|
148 |
document = gr.Files(height=300, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload PDF documents")
|
149 |
with gr.Row():
|
150 |
db_btn = gr.Button("Create vector database")
|
151 |
with gr.Row():
|
152 |
-
|
153 |
gr.Markdown("<style>body { font-size: 16px; }</style><b>Select Large Language Model (LLM) and input parameters</b>")
|
154 |
with gr.Row():
|
155 |
-
llm_btn = gr.Radio(list_llm_simple, label="Available LLMs", value
|
156 |
with gr.Row():
|
157 |
with gr.Accordion("LLM input parameters", open=False):
|
158 |
with gr.Row():
|
159 |
-
slider_temperature = gr.Slider(minimum
|
160 |
with gr.Row():
|
161 |
-
slider_maxtokens = gr.Slider(minimum
|
162 |
with gr.Row():
|
163 |
-
|
164 |
with gr.Row():
|
165 |
qachain_btn = gr.Button("Initialize Question Answering Chatbot")
|
166 |
with gr.Row():
|
167 |
-
|
168 |
|
169 |
-
with gr.Column(scale
|
170 |
gr.Markdown("<b>Step 2 - Chat with your Document</b>")
|
171 |
chatbot = gr.Chatbot(height=505)
|
172 |
-
with gr.Accordion("
|
173 |
with gr.Row():
|
174 |
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
|
175 |
source1_page = gr.Number(label="Page", scale=1)
|
@@ -186,31 +175,20 @@ def demo():
|
|
186 |
clear_btn = gr.ClearButton([msg, chatbot], value="Clear")
|
187 |
|
188 |
# Preprocessing events
|
189 |
-
db_btn.click(initialize_database,
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
197 |
-
queue=False)
|
198 |
|
199 |
# Chatbot events
|
200 |
-
msg.submit(conversation,
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
submit_btn.click(conversation, \
|
205 |
-
inputs=[qa_chain, msg, chatbot], \
|
206 |
-
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
207 |
-
queue=False)
|
208 |
-
clear_btn.click(lambda:[None,"",0,"",0,"",0], \
|
209 |
-
inputs=None, \
|
210 |
-
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
211 |
-
queue=False)
|
212 |
demo.queue().launch(debug=True)
|
213 |
|
214 |
-
|
215 |
if __name__ == "__main__":
|
216 |
demo()
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
|
|
|
|
3 |
|
4 |
from langchain_community.vectorstores import FAISS
|
5 |
from langchain_community.document_loaders import PyPDFLoader
|
6 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
7 |
from langchain.chains import ConversationalRetrievalChain
|
8 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
9 |
from langchain_community.llms import HuggingFacePipeline
|
|
|
10 |
from langchain.memory import ConversationBufferMemory
|
|
|
11 |
import torch
|
12 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
13 |
|
14 |
+
# List of local models (no HF_TOKEN required after download)
|
15 |
+
list_llm = ["mistralai/Mistral-7B-Instruct-v0.2", "TheBloke/Mixtral-8x7B-Instruct-v0.1-GPTQ"]
|
16 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
17 |
|
18 |
# Load and split PDF document
|
19 |
def load_doc(list_file_path):
|
|
|
|
|
|
|
20 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
21 |
pages = []
|
22 |
for loader in loaders:
|
23 |
pages.extend(loader.load())
|
24 |
text_splitter = RecursiveCharacterTextSplitter(
|
25 |
+
chunk_size=1024,
|
26 |
+
chunk_overlap=64
|
27 |
)
|
28 |
doc_splits = text_splitter.split_documents(pages)
|
29 |
return doc_splits
|
|
|
34 |
vectordb = FAISS.from_documents(splits, embeddings)
|
35 |
return vectordb
|
36 |
|
37 |
+
# Initialize langchain LLM chain with local model
|
|
|
38 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
39 |
+
# Load the model and tokenizer locally
|
40 |
+
tokenizer = AutoTokenizer.from_pretrained(llm_model)
|
41 |
+
model = AutoModelForCausalLM.from_pretrained(
|
42 |
+
llm_model,
|
43 |
+
device_map="auto", # Automatically use GPU if available
|
44 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, # Optimize for GPU or CPU
|
45 |
+
trust_remote_code=True # Required for some models
|
46 |
+
)
|
47 |
+
|
48 |
+
# Create a pipeline for text generation
|
49 |
+
pipe = pipeline(
|
50 |
+
"text-generation",
|
51 |
+
model=model,
|
52 |
+
tokenizer=tokenizer,
|
53 |
+
max_new_tokens=max_tokens,
|
54 |
+
temperature=temperature,
|
55 |
+
top_k=top_k,
|
56 |
+
do_sample=True,
|
57 |
+
repetition_penalty=1.1,
|
58 |
+
return_full_text=False
|
59 |
+
)
|
60 |
+
|
61 |
+
# Wrap the pipeline in HuggingFacePipeline for LangChain
|
62 |
+
llm = HuggingFacePipeline(pipeline=pipe)
|
63 |
|
64 |
memory = ConversationBufferMemory(
|
65 |
memory_key="chat_history",
|
66 |
+
output_key="answer",
|
67 |
return_messages=True
|
68 |
)
|
69 |
|
70 |
+
retriever = vector_db.as_retriever()
|
71 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
72 |
llm,
|
73 |
retriever=retriever,
|
|
|
80 |
|
81 |
# Initialize database
|
82 |
def initialize_database(list_file_obj, progress=gr.Progress()):
|
|
|
83 |
list_file_path = [x.name for x in list_file_obj if x is not None]
|
|
|
84 |
doc_splits = load_doc(list_file_path)
|
|
|
85 |
vector_db = create_db(doc_splits)
|
86 |
return vector_db, "Database created!"
|
87 |
|
88 |
# Initialize LLM
|
89 |
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
|
|
90 |
llm_name = list_llm[llm_option]
|
91 |
+
print("llm_name: ", llm_name)
|
92 |
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
|
93 |
return qa_chain, "QA chain initialized. Chatbot is ready!"
|
94 |
|
|
|
95 |
def format_chat_history(message, chat_history):
|
96 |
formatted_chat_history = []
|
97 |
for user_message, bot_message in chat_history:
|
98 |
formatted_chat_history.append(f"User: {user_message}")
|
99 |
formatted_chat_history.append(f"Assistant: {bot_message}")
|
100 |
return formatted_chat_history
|
|
|
101 |
|
102 |
def conversation(qa_chain, message, history):
|
103 |
formatted_chat_history = format_chat_history(message, history)
|
|
|
104 |
response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
|
105 |
response_answer = response["answer"]
|
106 |
if response_answer.find("Helpful Answer:") != -1:
|
|
|
109 |
response_source1 = response_sources[0].page_content.strip()
|
110 |
response_source2 = response_sources[1].page_content.strip()
|
111 |
response_source3 = response_sources[2].page_content.strip()
|
|
|
112 |
response_source1_page = response_sources[0].metadata["page"] + 1
|
113 |
response_source2_page = response_sources[1].metadata["page"] + 1
|
114 |
response_source3_page = response_sources[2].metadata["page"] + 1
|
|
|
115 |
new_history = history + [(message, response_answer)]
|
116 |
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
|
|
117 |
|
118 |
def upload_file(file_obj):
|
119 |
list_file_path = []
|
|
|
122 |
list_file_path.append(file_path)
|
123 |
return list_file_path
|
124 |
|
|
|
125 |
def demo():
|
126 |
+
with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue="sky")) as demo:
|
|
|
127 |
vector_db = gr.State()
|
128 |
qa_chain = gr.State()
|
129 |
gr.HTML("<center><h1>RAG PDF chatbot</h1><center>")
|
130 |
+
gr.Markdown("""<b>Query your PDF documents!</b> This AI agent is designed to perform retrieval augmented generation (RAG) on PDF documents. This version runs locally and does not require an API token. \
|
131 |
<b>Please do not upload confidential documents.</b>
|
132 |
""")
|
133 |
with gr.Row():
|
134 |
+
with gr.Column(scale=86):
|
135 |
gr.Markdown("<b>Step 1 - Upload PDF documents and Initialize RAG pipeline</b>")
|
136 |
with gr.Row():
|
137 |
document = gr.Files(height=300, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload PDF documents")
|
138 |
with gr.Row():
|
139 |
db_btn = gr.Button("Create vector database")
|
140 |
with gr.Row():
|
141 |
+
db_progress = gr.Textbox(value="Not initialized", show_label=False)
|
142 |
gr.Markdown("<style>body { font-size: 16px; }</style><b>Select Large Language Model (LLM) and input parameters</b>")
|
143 |
with gr.Row():
|
144 |
+
llm_btn = gr.Radio(list_llm_simple, label="Available LLMs", value=list_llm_simple[0], type="index")
|
145 |
with gr.Row():
|
146 |
with gr.Accordion("LLM input parameters", open=False):
|
147 |
with gr.Row():
|
148 |
+
slider_temperature = gr.Slider(minimum=0.01, maximum=1.0, value=0.5, step=0.1, label="Temperature", info="Controls randomness in token generation", interactive=True)
|
149 |
with gr.Row():
|
150 |
+
slider_maxtokens = gr.Slider(minimum=128, maximum=4096, value=1024, step=128, label="Max New Tokens", info="Maximum number of tokens to be generated", interactive=True)
|
151 |
with gr.Row():
|
152 |
+
slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k", info="Number of tokens to select the next token from", interactive=True)
|
153 |
with gr.Row():
|
154 |
qachain_btn = gr.Button("Initialize Question Answering Chatbot")
|
155 |
with gr.Row():
|
156 |
+
llm_progress = gr.Textbox(value="Not initialized", show_label=False)
|
157 |
|
158 |
+
with gr.Column(scale=200):
|
159 |
gr.Markdown("<b>Step 2 - Chat with your Document</b>")
|
160 |
chatbot = gr.Chatbot(height=505)
|
161 |
+
with gr.Accordion("Relevant context from the source document", open=False):
|
162 |
with gr.Row():
|
163 |
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
|
164 |
source1_page = gr.Number(label="Page", scale=1)
|
|
|
175 |
clear_btn = gr.ClearButton([msg, chatbot], value="Clear")
|
176 |
|
177 |
# Preprocessing events
|
178 |
+
db_btn.click(initialize_database, inputs=[document], outputs=[vector_db, db_progress])
|
179 |
+
qachain_btn.click(initialize_LLM, inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], outputs=[qa_chain, llm_progress]).then(
|
180 |
+
lambda: [None, "", 0, "", 0, "", 0],
|
181 |
+
inputs=None,
|
182 |
+
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
183 |
+
queue=False
|
184 |
+
)
|
|
|
|
|
185 |
|
186 |
# Chatbot events
|
187 |
+
msg.submit(conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False)
|
188 |
+
submit_btn.click(conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False)
|
189 |
+
clear_btn.click(lambda: [None, "", 0, "", 0, "", 0], inputs=None, outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False)
|
190 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
demo.queue().launch(debug=True)
|
192 |
|
|
|
193 |
if __name__ == "__main__":
|
194 |
demo()
|