File size: 7,468 Bytes
e190eb7
a6b8103
e190eb7
c2e6608
a6b8103
2eb8c3b
c2e6608
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e190eb7
 
 
 
 
 
 
 
 
 
 
 
 
 
a6b8103
e190eb7
 
 
 
a6b8103
e190eb7
 
 
 
 
 
 
 
a6b8103
e190eb7
 
 
 
 
 
 
 
 
 
a6b8103
e190eb7
 
 
 
a6b8103
e190eb7
 
c2e6608
e190eb7
 
a6b8103
e190eb7
 
 
 
 
 
 
 
 
 
 
 
 
a6b8103
e190eb7
 
a6b8103
e190eb7
 
c2e6608
e190eb7
 
 
 
 
2eb8c3b
 
 
 
e190eb7
 
a6b8103
e190eb7
 
 
 
 
 
 
 
 
 
 
 
a6b8103
e190eb7
 
 
 
 
 
 
 
 
 
 
a6b8103
2eb8c3b
e190eb7
c2e6608
e190eb7
 
 
a6b8103
e190eb7
c2e6608
e190eb7
 
 
a6b8103
2eb8c3b
 
 
 
 
 
e190eb7
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
import random

# Classe RubiksCube (mantém o mesmo código)
class RubiksCube:
    def __init__(self):
        self.cube = np.zeros((6, 3, 3), dtype=int)
        for i in range(6):
            self.cube[i] = np.full((3, 3), i)
        
        self.color_names = {
            0: "Branco",
            1: "Amarelo",
            2: "Verde",
            3: "Azul",
            4: "Vermelho",
            5: "Laranja"
        }
    
    def rotate_face_clockwise(self, face_num):
        if 0 <= face_num < 6:
            self.cube[face_num] = np.rot90(self.cube[face_num], k=-1)
            self._update_adjacent_faces(face_num, clockwise=True)
    
    def rotate_face_counterclockwise(self, face_num):
        if 0 <= face_num < 6:
            self.cube[face_num] = np.rot90(self.cube[face_num], k=1)
            self._update_adjacent_faces(face_num, clockwise=False)
    
    def _update_adjacent_faces(self, face_num, clockwise=True):
        adjacent_faces = {
            0: [(2,0), (4,0), (3,0), (5,0)],  # Topo
            1: [(2,2), (5,2), (3,2), (4,2)],  # Base
            2: [(0,2), (4,3), (1,0), (5,1)],  # Frente
            3: [(0,0), (5,3), (1,2), (4,1)],  # Traseira
            4: [(0,1), (2,1), (1,1), (3,3)],  # Direita
            5: [(0,3), (3,1), (1,3), (2,3)]   # Esquerda
        }
        
        affected = adjacent_faces[face_num]
        temp_values = []
        
        for face, edge in affected:
            if edge == 0:
                temp_values.append(self.cube[face][0].copy())
            elif edge == 1:
                temp_values.append(self.cube[face][:,2].copy())
            elif edge == 2:
                temp_values.append(self.cube[face][2].copy())
            else:  # edge == 3
                temp_values.append(self.cube[face][:,0].copy())
        
        if clockwise:
            temp_values = [temp_values[-1]] + temp_values[:-1]
        else:
            temp_values = temp_values[1:] + [temp_values[0]]
        
        for (face, edge), new_values in zip(affected, temp_values):
            if edge == 0:
                self.cube[face][0] = new_values
            elif edge == 1:
                self.cube[face][:,2] = new_values
            elif edge == 2:
                self.cube[face][2] = new_values
            else:  # edge == 3
                self.cube[face][:,0] = new_values
    
    def is_solved(self):
        return all(np.all(self.cube[face] == face) for face in range(6))
    
    def scramble(self, num_moves=20):
        moves = []
        for _ in range(num_moves):
            face = random.randint(0, 5)
            direction = random.choice([True, False])
            if direction:
                self.rotate_face_clockwise(face)
                moves.append(f"Rotação horária da face {self.color_names[face]}")
            else:
                self.rotate_face_counterclockwise(face)
                moves.append(f"Rotação anti-horária da face {self.color_names[face]}")
        return moves

# Funções de interface
def num_to_color(num):
    colors = {
        0: "#FFFFFF",  # Branco
        1: "#FFFF00",  # Amarelo
        2: "#00FF00",  # Verde
        3: "#0000FF",  # Azul
        4: "#FF0000",  # Vermelho
        5: "#FFA500"   # Laranja
    }
    return colors.get(num, "#CCCCCC")

def create_cube_visualization(cube_state):
    fig, ax = plt.subplots(4, 3, figsize=(10, 12))
    plt.subplots_adjust(hspace=0.4, wspace=0.4)
    
    for row in ax:
        for col in row:
            col.set_xticks([])
            col.set_yticks([])
    
    face_positions = [
        (1, 1),  # Face superior (branco)
        (2, 1),  # Face frontal (verde)
        (1, 2),  # Face direita (vermelho)
        (1, 0),  # Face esquerda (laranja)
        (3, 1),  # Face inferior (amarelo)
        (2, 2),  # Face traseira (azul)
    ]
    
    for face_idx, (row, col) in enumerate(face_positions):
        if row < 4 and col < 3:
            face = cube_state[face_idx]
            for i in range(3):
                for j in range(3):
                    color = num_to_color(face[i, j])
                    ax[row, col].add_patch(plt.Rectangle((j/3, (2-i)/3), 1/3, 1/3, facecolor=color, edgecolor='black'))
            ax[row, col].set_xlim(0, 1)
            ax[row, col].set_ylim(0, 1)
            ax[row, col].set_title(f'Face {cube.color_names[face_idx]}')
    
    for row in range(4):
        for col in range(3):
            if (row, col) not in face_positions:
                fig.delaxes(ax[row, col])
    
    return fig

def process_moves(moves, current_state):
    moves_list = moves.strip().split('\n')
    output_text = []
    
    for move in moves_list:
        move = move.strip().lower()
        try:
            if move.startswith('r'):  # rotação horária
                face = int(move[1])
                cube.rotate_face_clockwise(face)
                output_text.append(f"Rotação horária da face {cube.color_names[face]}")
            elif move.startswith('l'):  # rotação anti-horária
                face = int(move[1])
                cube.rotate_face_counterclockwise(face)
                output_text.append(f"Rotação anti-horária da face {cube.color_names[face]}")
        except:
            output_text.append(f"Movimento inválido: {move}")
    
    fig = create_cube_visualization(cube.cube)
    status = "Resolvido!" if cube.is_solved() else "Não resolvido"
    
    return fig, "\n".join(output_text), status

def scramble_cube(n_moves):
    moves = cube.scramble(int(n_moves))
    fig = create_cube_visualization(cube.cube)
    status = "Resolvido!" if cube.is_solved() else "Não resolvido"
    return fig, "\n".join(moves), status

def show_initial_state():
    fig = create_cube_visualization(cube.cube)
    return fig, "", "Cubo inicial"

# Criar instância do cubo
cube = RubiksCube()

# Criar interface Gradio
with gr.Blocks(title="Cubo Mágico") as demo:
    gr.Markdown("# Simulador de Cubo Mágico")
    gr.Markdown("""
    ### Como usar:
    1. Use o botão 'Embaralhar' para misturar o cubo
    2. Digite movimentos no formato:
       - r0 (rotação horária da face 0)
       - l0 (rotação anti-horária da face 0)
       onde o número representa a face:
       0: Branco, 1: Amarelo, 2: Verde, 3: Azul, 4: Vermelho, 5: Laranja
    """)
    
    with gr.Row():
        with gr.Column():
            n_moves = gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Número de movimentos para embaralhar")
            scramble_btn = gr.Button("Embaralhar")
            moves_input = gr.Textbox(label="Digite os movimentos (um por linha)", lines=5)
            move_btn = gr.Button("Executar Movimentos")
        
        with gr.Column():
            cube_plot = gr.Plot()
            output_text = gr.Textbox(label="Movimentos realizados", lines=5)
            status_text = gr.Textbox(label="Status")
    
    # Conectar os botões às funções
    scramble_btn.click(
        fn=scramble_cube,
        inputs=[n_moves],
        outputs=[cube_plot, output_text, status_text]
    )
    
    move_btn.click(
        fn=process_moves,
        inputs=[moves_input, status_text],
        outputs=[cube_plot, output_text, status_text]
    )
    
    # Carregar estado inicial
    demo.load(
        fn=show_initial_state,
        inputs=None,
        outputs=[cube_plot, output_text, status_text]
    )

# Iniciar a aplicação
demo.launch()