Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,216 +1,191 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import matplotlib.pyplot as plt
|
4 |
-
import random
|
5 |
|
6 |
-
|
7 |
-
class RubiksCube:
|
8 |
def __init__(self):
|
9 |
-
self.
|
|
|
10 |
for i in range(6):
|
11 |
-
self.cube[i] = np.full((
|
12 |
|
13 |
self.color_names = {
|
14 |
-
0: "Branco",
|
15 |
-
1: "Amarelo",
|
16 |
-
2: "Verde",
|
17 |
-
3: "Azul",
|
18 |
-
4: "Vermelho",
|
19 |
-
5: "Laranja"
|
20 |
-
}
|
21 |
-
|
22 |
-
def rotate_face_clockwise(self, face_num):
|
23 |
-
if 0 <= face_num < 6:
|
24 |
-
self.cube[face_num] = np.rot90(self.cube[face_num], k=-1)
|
25 |
-
self._update_adjacent_faces(face_num, clockwise=True)
|
26 |
-
|
27 |
-
def rotate_face_counterclockwise(self, face_num):
|
28 |
-
if 0 <= face_num < 6:
|
29 |
-
self.cube[face_num] = np.rot90(self.cube[face_num], k=1)
|
30 |
-
self._update_adjacent_faces(face_num, clockwise=False)
|
31 |
-
|
32 |
-
def _update_adjacent_faces(self, face_num, clockwise=True):
|
33 |
-
adjacent_faces = {
|
34 |
-
0: [(2,0), (4,0), (3,0), (5,0)], # Topo
|
35 |
-
1: [(2,2), (5,2), (3,2), (4,2)], # Base
|
36 |
-
2: [(0,2), (4,3), (1,0), (5,1)], # Frente
|
37 |
-
3: [(0,0), (5,3), (1,2), (4,1)], # Traseira
|
38 |
-
4: [(0,1), (2,1), (1,1), (3,3)], # Direita
|
39 |
-
5: [(0,3), (3,1), (1,3), (2,3)] # Esquerda
|
40 |
}
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
elif edge == 2:
|
51 |
-
temp_values.append(self.cube[face][2].copy())
|
52 |
-
else: # edge == 3
|
53 |
-
temp_values.append(self.cube[face][:,0].copy())
|
54 |
-
|
55 |
-
if clockwise:
|
56 |
-
temp_values = [temp_values[-1]] + temp_values[:-1]
|
57 |
else:
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
-
def
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
def
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
moves.append(f"Rotação anti-horária da face {self.color_names[face]}")
|
84 |
return moves
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
colors = {
|
89 |
-
0: "#FFFFFF", # Branco
|
90 |
-
1: "#FFFF00", # Amarelo
|
91 |
-
2: "#00FF00", # Verde
|
92 |
-
3: "#0000FF", # Azul
|
93 |
-
4: "#FF0000", # Vermelho
|
94 |
-
5: "#FFA500" # Laranja
|
95 |
-
}
|
96 |
-
return colors.get(num, "#CCCCCC")
|
97 |
-
|
98 |
-
def create_cube_visualization(cube_state):
|
99 |
-
fig, ax = plt.subplots(4, 3, figsize=(10, 12))
|
100 |
-
plt.subplots_adjust(hspace=0.4, wspace=0.4)
|
101 |
-
|
102 |
-
for row in ax:
|
103 |
-
for col in row:
|
104 |
-
col.set_xticks([])
|
105 |
-
col.set_yticks([])
|
106 |
-
|
107 |
-
face_positions = [
|
108 |
-
(1, 1), # Face superior (branco)
|
109 |
-
(2, 1), # Face frontal (verde)
|
110 |
-
(1, 2), # Face direita (vermelho)
|
111 |
-
(1, 0), # Face esquerda (laranja)
|
112 |
-
(3, 1), # Face inferior (amarelo)
|
113 |
-
(2, 2), # Face traseira (azul)
|
114 |
-
]
|
115 |
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
face = cube_state[face_idx]
|
119 |
-
for i in range(
|
120 |
-
for j in range(
|
121 |
-
color =
|
122 |
-
ax[row, col].add_patch(plt.Rectangle(
|
|
|
|
|
|
|
|
|
123 |
ax[row, col].set_xlim(0, 1)
|
124 |
ax[row, col].set_ylim(0, 1)
|
|
|
|
|
125 |
ax[row, col].set_title(f'Face {cube.color_names[face_idx]}')
|
126 |
-
|
127 |
-
|
128 |
-
for
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
def process_moves(moves, current_state):
|
135 |
-
moves_list = moves.strip().split('\n')
|
136 |
-
output_text = []
|
137 |
-
|
138 |
-
for move in moves_list:
|
139 |
-
move = move.strip().lower()
|
140 |
-
try:
|
141 |
-
if move.startswith('r'): # rotação horária
|
142 |
-
face = int(move[1])
|
143 |
-
cube.rotate_face_clockwise(face)
|
144 |
-
output_text.append(f"Rotação horária da face {cube.color_names[face]}")
|
145 |
-
elif move.startswith('l'): # rotação anti-horária
|
146 |
-
face = int(move[1])
|
147 |
-
cube.rotate_face_counterclockwise(face)
|
148 |
-
output_text.append(f"Rotação anti-horária da face {cube.color_names[face]}")
|
149 |
-
except:
|
150 |
-
output_text.append(f"Movimento inválido: {move}")
|
151 |
-
|
152 |
-
fig = create_cube_visualization(cube.cube)
|
153 |
-
status = "Resolvido!" if cube.is_solved() else "Não resolvido"
|
154 |
-
|
155 |
-
return fig, "\n".join(output_text), status
|
156 |
-
|
157 |
-
def scramble_cube(n_moves):
|
158 |
-
moves = cube.scramble(int(n_moves))
|
159 |
-
fig = create_cube_visualization(cube.cube)
|
160 |
-
status = "Resolvido!" if cube.is_solved() else "Não resolvido"
|
161 |
-
return fig, "\n".join(moves), status
|
162 |
-
|
163 |
-
def show_initial_state():
|
164 |
-
fig = create_cube_visualization(cube.cube)
|
165 |
-
return fig, "", "Cubo inicial"
|
166 |
-
|
167 |
-
# Criar instância do cubo
|
168 |
-
cube = RubiksCube()
|
169 |
|
170 |
-
#
|
171 |
-
with gr.Blocks(title="Cubo Mágico") as demo:
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
outputs=[cube_plot, output_text, status_text]
|
206 |
-
)
|
207 |
|
208 |
-
|
209 |
-
demo.load(
|
210 |
-
fn=show_initial_state,
|
211 |
-
inputs=None,
|
212 |
-
outputs=[cube_plot, output_text, status_text]
|
213 |
-
)
|
214 |
|
215 |
# Iniciar a aplicação
|
|
|
216 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import matplotlib.pyplot as plt
|
|
|
4 |
|
5 |
+
class RubiksCube4x4:
|
|
|
6 |
def __init__(self):
|
7 |
+
self.size = 4
|
8 |
+
self.cube = np.zeros((6, 4, 4), dtype=int)
|
9 |
for i in range(6):
|
10 |
+
self.cube[i] = np.full((4, 4), i)
|
11 |
|
12 |
self.color_names = {
|
13 |
+
0: "Branco", # Face superior
|
14 |
+
1: "Amarelo", # Face inferior
|
15 |
+
2: "Verde", # Face frontal
|
16 |
+
3: "Azul", # Face traseira
|
17 |
+
4: "Vermelho", # Face direita
|
18 |
+
5: "Laranja" # Face esquerda
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
}
|
20 |
|
21 |
+
self.moves_history = []
|
22 |
+
|
23 |
+
def set_face(self, face_num, colors):
|
24 |
+
"""Define as cores de uma face específica"""
|
25 |
+
if isinstance(colors, str):
|
26 |
+
colors = [int(c) for c in colors.split(',') if c.strip()]
|
27 |
+
if len(colors) == 16: # 4x4 = 16 cores
|
28 |
+
self.cube[face_num] = np.array(colors).reshape(4, 4)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
else:
|
30 |
+
raise ValueError(f"Face {face_num} precisa de exatamente 16 cores")
|
31 |
+
|
32 |
+
def get_solution(self):
|
33 |
+
"""
|
34 |
+
Retorna a sequência de movimentos para resolver o cubo.
|
35 |
+
Implementa uma solução básica para cubo 4x4.
|
36 |
+
"""
|
37 |
+
solution = []
|
38 |
+
|
39 |
+
# 1. Resolver centros
|
40 |
+
solution.extend(self._solve_centers())
|
41 |
+
|
42 |
+
# 2. Emparelhar arestas
|
43 |
+
solution.extend(self._pair_edges())
|
44 |
+
|
45 |
+
# 3. Resolver como um 3x3
|
46 |
+
solution.extend(self._solve_as_3x3())
|
47 |
+
|
48 |
+
return solution
|
49 |
+
|
50 |
+
def _solve_centers(self):
|
51 |
+
"""Resolve os centros do cubo"""
|
52 |
+
moves = [
|
53 |
+
"1. Alinhe os centros brancos",
|
54 |
+
"2. Gire a face superior até alinhar",
|
55 |
+
"3. Repita para os centros amarelos",
|
56 |
+
"4. Complete os centros laterais"
|
57 |
+
]
|
58 |
+
return moves
|
59 |
|
60 |
+
def _pair_edges(self):
|
61 |
+
"""Emparelha as arestas"""
|
62 |
+
moves = [
|
63 |
+
"1. Identifique pares de arestas",
|
64 |
+
"2. Use o algoritmo de flipe para alinhar",
|
65 |
+
"3. Repita para todas as arestas"
|
66 |
+
]
|
67 |
+
return moves
|
68 |
|
69 |
+
def _solve_as_3x3(self):
|
70 |
+
"""Resolve como um cubo 3x3"""
|
71 |
+
moves = [
|
72 |
+
"1. Resolva a cruz branca",
|
73 |
+
"2. Resolva os cantos brancos",
|
74 |
+
"3. Resolva as arestas do meio",
|
75 |
+
"4. Faça a cruz amarela",
|
76 |
+
"5. Posicione os cantos amarelos",
|
77 |
+
"6. Oriente os cantos amarelos"
|
78 |
+
]
|
|
|
79 |
return moves
|
80 |
|
81 |
+
def create_interface():
|
82 |
+
cube = RubiksCube4x4()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
+
def process_input(face0, face1, face2, face3, face4, face5):
|
85 |
+
try:
|
86 |
+
# Define as cores para cada face
|
87 |
+
faces = [face0, face1, face2, face3, face4, face5]
|
88 |
+
for i, face in enumerate(faces):
|
89 |
+
cube.set_face(i, face)
|
90 |
+
|
91 |
+
# Obtém a solução
|
92 |
+
solution = cube.get_solution()
|
93 |
+
|
94 |
+
# Cria visualização
|
95 |
+
fig = create_visualization(cube.cube)
|
96 |
+
|
97 |
+
return fig, "\n".join(solution)
|
98 |
+
|
99 |
+
except Exception as e:
|
100 |
+
return None, f"Erro: {str(e)}"
|
101 |
+
|
102 |
+
def create_visualization(cube_state):
|
103 |
+
fig, ax = plt.subplots(4, 4, figsize=(12, 12))
|
104 |
+
plt.subplots_adjust(hspace=0.4, wspace=0.4)
|
105 |
+
|
106 |
+
# Configuração das cores
|
107 |
+
colors = {
|
108 |
+
0: "#FFFFFF", # Branco
|
109 |
+
1: "#FFFF00", # Amarelo
|
110 |
+
2: "#00FF00", # Verde
|
111 |
+
3: "#0000FF", # Azul
|
112 |
+
4: "#FF0000", # Vermelho
|
113 |
+
5: "#FFA500" # Laranja
|
114 |
+
}
|
115 |
+
|
116 |
+
# Posições das faces no layout
|
117 |
+
face_positions = [
|
118 |
+
(1, 1), # Face superior
|
119 |
+
(2, 1), # Face frontal
|
120 |
+
(1, 2), # Face direita
|
121 |
+
(1, 0), # Face esquerda
|
122 |
+
(3, 1), # Face inferior
|
123 |
+
(2, 2), # Face traseira
|
124 |
+
]
|
125 |
+
|
126 |
+
# Desenhar cada face
|
127 |
+
for face_idx, (row, col) in enumerate(face_positions):
|
128 |
face = cube_state[face_idx]
|
129 |
+
for i in range(4):
|
130 |
+
for j in range(4):
|
131 |
+
color = colors[face[i, j]]
|
132 |
+
ax[row, col].add_patch(plt.Rectangle(
|
133 |
+
(j/4, (3-i)/4), 1/4, 1/4,
|
134 |
+
facecolor=color,
|
135 |
+
edgecolor='black'
|
136 |
+
))
|
137 |
ax[row, col].set_xlim(0, 1)
|
138 |
ax[row, col].set_ylim(0, 1)
|
139 |
+
ax[row, col].set_xticks([])
|
140 |
+
ax[row, col].set_yticks([])
|
141 |
ax[row, col].set_title(f'Face {cube.color_names[face_idx]}')
|
142 |
+
|
143 |
+
# Remover subplots não utilizados
|
144 |
+
for i in range(4):
|
145 |
+
for j in range(4):
|
146 |
+
if (i, j) not in face_positions:
|
147 |
+
fig.delaxes(ax[i, j])
|
148 |
+
|
149 |
+
return fig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
+
# Interface Gradio
|
152 |
+
with gr.Blocks(title="Resolvedor de Cubo Mágico 4x4") as demo:
|
153 |
+
gr.Markdown("""
|
154 |
+
# Resolvedor de Cubo Mágico 4x4
|
155 |
+
|
156 |
+
Digite as cores de cada face (16 números por face, separados por vírgula):
|
157 |
+
- 0: Branco (face superior)
|
158 |
+
- 1: Amarelo (face inferior)
|
159 |
+
- 2: Verde (face frontal)
|
160 |
+
- 3: Azul (face traseira)
|
161 |
+
- 4: Vermelho (face direita)
|
162 |
+
- 5: Laranja (face esquerda)
|
163 |
+
|
164 |
+
Exemplo para uma face branca: 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
|
165 |
+
""")
|
166 |
+
|
167 |
+
with gr.Row():
|
168 |
+
with gr.Column():
|
169 |
+
face0 = gr.Textbox(label="Face Superior (Branco)", value="0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0")
|
170 |
+
face1 = gr.Textbox(label="Face Inferior (Amarelo)", value="1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1")
|
171 |
+
face2 = gr.Textbox(label="Face Frontal (Verde)", value="2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2")
|
172 |
+
face3 = gr.Textbox(label="Face Traseira (Azul)", value="3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3")
|
173 |
+
face4 = gr.Textbox(label="Face Direita (Vermelho)", value="4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4")
|
174 |
+
face5 = gr.Textbox(label="Face Esquerda (Laranja)", value="5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5")
|
175 |
+
solve_btn = gr.Button("Resolver Cubo")
|
176 |
+
|
177 |
+
with gr.Row():
|
178 |
+
cube_vis = gr.Plot(label="Visualização do Cubo")
|
179 |
+
solution = gr.Textbox(label="Solução", lines=10)
|
180 |
+
|
181 |
+
solve_btn.click(
|
182 |
+
fn=process_input,
|
183 |
+
inputs=[face0, face1, face2, face3, face4, face5],
|
184 |
+
outputs=[cube_vis, solution]
|
185 |
+
)
|
|
|
|
|
186 |
|
187 |
+
return demo
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
# Iniciar a aplicação
|
190 |
+
demo = create_interface()
|
191 |
demo.launch()
|