DHEIVER commited on
Commit
5b2b2b1
·
verified ·
1 Parent(s): 5b90410

Upload 7 files

Browse files
README (3).md ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Object & Color Detection In Video
3
+ emoji: 😏
4
+ colorFrom: green
5
+ colorTo: purple
6
+ sdk: gradio
7
+ sdk_version: 3.11
8
+ app_file: app.py
9
+ pinned: false
10
+ license: openrail
11
+ ---
12
+
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app (4).py ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import gradio as gr
3
+ import fast_colorthief
4
+ import webcolors
5
+ from PIL import Image
6
+ import numpy as np
7
+ thres = 0.45 # Threshold to detect object
8
+
9
+
10
+
11
+ def Detection(filename):
12
+ cap = cv2.VideoCapture(filename)
13
+ framecount=0
14
+
15
+ cap.set(3,1280)
16
+ cap.set(4,720)
17
+ cap.set(10,70)
18
+
19
+ error="in function 'cv::imshow'"
20
+ classNames= []
21
+ FinalItems=[]
22
+ classFile = 'coco.names'
23
+ with open(classFile,'rt') as f:
24
+ #classNames = f.read().rstrip('n').split('n')
25
+ classNames = f.readlines()
26
+
27
+
28
+ # remove new line characters
29
+ classNames = [x.strip() for x in classNames]
30
+ print(classNames)
31
+ configPath = 'ssd_mobilenet_v3_large_coco_2020_01_14.pbtxt'
32
+ weightsPath = 'frozen_inference_graph.pb'
33
+
34
+
35
+ net = cv2.dnn_DetectionModel(weightsPath,configPath)
36
+ net.setInputSize(320,320)
37
+ net.setInputScale(1.0/ 127.5)
38
+ net.setInputMean((127.5, 127.5, 127.5))
39
+ net.setInputSwapRB(True)
40
+
41
+ while True:
42
+ success,img = cap.read()
43
+
44
+
45
+
46
+ # #Colour
47
+ try:
48
+ image = Image.fromarray(img)
49
+ image = image.convert('RGBA')
50
+ image = np.array(image).astype(np.uint8)
51
+ palette=fast_colorthief.get_palette(image)
52
+
53
+
54
+ for i in range(len(palette)):
55
+ diff={}
56
+ for color_hex, color_name in webcolors.CSS3_HEX_TO_NAMES.items():
57
+ r, g, b = webcolors.hex_to_rgb(color_hex)
58
+ diff[sum([(r - palette[i][0])**2,
59
+ (g - palette[i][1])**2,
60
+ (b - palette[i][2])**2])]= color_name
61
+ if FinalItems.count(diff[min(diff.keys())])==0:
62
+ FinalItems.append(diff[min(diff.keys())])
63
+
64
+ except:
65
+ pass
66
+
67
+ try:
68
+ classIds, confs, bbox = net.detect(img,confThreshold=thres)
69
+ except:
70
+ pass
71
+ print(classIds,bbox)
72
+ try:
73
+ if len(classIds) != 0:
74
+ for classId, confidence,box in zip(classIds.flatten(),confs.flatten(),bbox):
75
+
76
+ #cv2.rectangle(img,box,color=(0,255,0),thickness=2)
77
+ #cv2.putText(img,classNames[classId-1].upper(),(box[0]+10,box[1]+30),
78
+ #cv2.FONT_HERSHEY_COMPLEX,1,(0,255,0),2)
79
+ #cv2.putText(img,str(round(confidence*100,2)),(box[0]+200,box[1]+30),
80
+ #cv2.FONT_HERSHEY_COMPLEX,1,(0,255,0),2)
81
+ if FinalItems.count(classNames[classId-1]) == 0:
82
+ FinalItems.append(classNames[classId-1])
83
+
84
+
85
+ #cv2.imshow("Output",img)
86
+ cv2.waitKey(10)
87
+ if framecount>cap.get(cv2.CAP_PROP_FRAME_COUNT):
88
+ break
89
+ else:
90
+ framecount+=1
91
+ except Exception as err:
92
+ print(err)
93
+ t=str(err)
94
+ if t.__contains__(error):
95
+ break
96
+
97
+ print(FinalItems)
98
+ return str(FinalItems)
99
+
100
+ interface = gr.Interface(fn=Detection,
101
+ inputs=["video"],
102
+ outputs="text",
103
+ title='Object & Color Detection in Video')
104
+ interface.launch(inline=False,debug=True)
coco.names ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ person
2
+ bicycle
3
+ car
4
+ motorcycle
5
+ airplane
6
+ bus
7
+ train
8
+ truck
9
+ boat
10
+ traffic light
11
+ fire hydrant
12
+ street sign
13
+ stop sign
14
+ parking meter
15
+ bench
16
+ bird
17
+ cat
18
+ dog
19
+ horse
20
+ sheep
21
+ cow
22
+ elephant
23
+ bear
24
+ zebra
25
+ giraffe
26
+ hat
27
+ backpack
28
+ umbrella
29
+ shoe
30
+ eye glasses
31
+ handbag
32
+ tie
33
+ suitcase
34
+ frisbee
35
+ skis
36
+ snowboard
37
+ sports ball
38
+ kite
39
+ baseball bat
40
+ baseball glove
41
+ skateboard
42
+ surfboard
43
+ tennis racket
44
+ bottle
45
+ plate
46
+ wine glass
47
+ cup
48
+ fork
49
+ knife
50
+ spoon
51
+ bowl
52
+ banana
53
+ apple
54
+ sandwich
55
+ orange
56
+ broccoli
57
+ carrot
58
+ hot dog
59
+ pizza
60
+ donut
61
+ cake
62
+ chair
63
+ couch
64
+ potted plant
65
+ bed
66
+ mirror
67
+ dining table
68
+ window
69
+ desk
70
+ toilet
71
+ door
72
+ tv
73
+ laptop
74
+ mouse
75
+ remote
76
+ keyboard
77
+ cell phone
78
+ microwave
79
+ oven
80
+ toaster
81
+ sink
82
+ refrigerator
83
+ blender
84
+ book
85
+ clock
86
+ vase
87
+ scissors
88
+ teddy bear
89
+ hair drier
90
+ toothbrush
91
+ hair brush
frozen_inference_graph.pb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c95e720eed1bbaf264048ab8fbe6765e5b3a64fafe64020cd53ecd14ccf2c58
3
+ size 13448454
gitattributes (2) ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tflite filter=lfs diff=lfs merge=lfs -text
29
+ *.tgz filter=lfs diff=lfs merge=lfs -text
30
+ *.wasm filter=lfs diff=lfs merge=lfs -text
31
+ *.xz filter=lfs diff=lfs merge=lfs -text
32
+ *.zip filter=lfs diff=lfs merge=lfs -text
33
+ *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
requirements (3).txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ opencv-python
2
+ fast_colorthief
3
+ webcolors
4
+ Pillow
5
+ numpy
ssd_mobilenet_v3_large_coco_2020_01_14.pbtxt ADDED
The diff for this file is too large to render. See raw diff