Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from transformers import pipeline | |
class LearningPathGenerator: | |
def __init__(self): | |
self.device = 0 if torch.cuda.is_available() else -1 | |
# Initialize models | |
self.transcriber = pipeline("automatic-speech-recognition", | |
model="openai/whisper-base", | |
device=self.device) | |
self.generator = pipeline("text-generation", | |
model="gpt2", | |
device=self.device) | |
def process_audio(self, | |
audio_path: str, | |
difficulty: str = "intermediate") -> dict: | |
try: | |
# Transcribe audio | |
transcription = self.transcriber(audio_path)["text"] | |
# Generate learning path | |
prompt = f""" | |
Based on the following text, create a detailed learning path | |
for {difficulty} level: | |
{transcription} | |
Learning path: | |
""" | |
analysis = self.generator(prompt, | |
max_length=300, | |
num_return_sequences=1)[0]["generated_text"] | |
return { | |
"transcription": transcription, | |
"analysis": analysis | |
} | |
except Exception as e: | |
return { | |
"transcription": f"Error: {str(e)}", | |
"analysis": "Could not generate analysis." | |
} | |
def create_interface(): | |
app = gr.Interface( | |
fn=LearningPathGenerator().process_audio, | |
inputs=[ | |
gr.Audio(type="filepath", label="Upload Audio"), | |
gr.Dropdown( | |
choices=["beginner", "intermediate", "advanced"], | |
value="intermediate", | |
label="Difficulty Level" | |
) | |
], | |
outputs=[ | |
gr.Textbox(label="Audio Transcription"), | |
gr.Textbox(label="Learning Path") | |
], | |
title="π Learning Path Generator", | |
description="Upload an audio file describing your learning goals and receive a personalized learning path!" | |
) | |
return app | |
if __name__ == "__main__": | |
app = create_interface() | |
app.launch() |