Spaces:
Runtime error
Runtime error
File size: 8,915 Bytes
8c4611d a001ae3 0fc3a1a 3b3fba2 804694d 0fc3a1a a001ae3 3b3fba2 a001ae3 eee3432 a001ae3 202f621 f98760e 0fc3a1a f98760e 202f621 f98760e 202f621 f98760e 202f621 f98760e 202f621 7c98ceb 202f621 a001ae3 8c4611d 5c47ebc 8c4611d 202f621 a1b868a 8c4611d 0d63a86 5c47ebc f98760e a1b868a 0d63a86 5c47ebc a001ae3 a1b868a 0d63a86 5c47ebc 8c4611d 0d63a86 46fc8ff 0d63a86 d63ff40 8c4611d d63ff40 0d63a86 d63ff40 0d63a86 d63ff40 0d63a86 d63ff40 f98760e 8c4611d d63ff40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
import gradio as gr
import edge_tts
import asyncio
import tempfile
import numpy as np
import soxr
from pydub import AudioSegment
import torch
import sentencepiece as spm
import onnxruntime as ort
from huggingface_hub import hf_hub_download, InferenceClient
import requests
from bs4 import BeautifulSoup
import urllib
import random
import re
# List of user agents to choose from for requests
_useragent_list = [
'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/109.0.0.0 Safari/537.36',
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36 Edg/111.0.1661.62',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0'
]
def get_useragent():
"""Returns a random user agent from the list."""
return random.choice(_useragent_list)
def extract_text_from_webpage(html_content):
"""Extracts visible text from HTML content using BeautifulSoup."""
soup = BeautifulSoup(html_content, "html.parser")
# Remove unwanted tags
for tag in soup(["script", "style", "header", "footer", "nav"]):
tag.extract()
# Get the remaining visible text
visible_text = soup.get_text(strip=True)
visible_text = visible_text[:8000]
return visible_text
def search(term, num_results=2, timeout=5, ssl_verify=None):
"""Performs a Google search and returns the results."""
escaped_term = urllib.parse.quote_plus(term)
all_results = []
resp = requests.get(
url="https://www.google.com/search",
headers={"User-Agent": get_useragent()}, # Set random user agent
params={
"q": term,
"num": num_results,
"udm": 14,
},
timeout=timeout,
verify=ssl_verify,
)
resp.raise_for_status() # Raise an exception if request fails
soup = BeautifulSoup(resp.text, "html.parser")
result_block = soup.find_all("div", attrs={"class": "g"})
for result in result_block:
link = result.find("a", href=True)
if link:
link = link["href"]
try:
# Fetch webpage content
webpage = requests.get(link, headers={"User-Agent": get_useragent()})
webpage.raise_for_status()
# Extract visible text from webpage
visible_text = extract_text_from_webpage(webpage.text)
all_results.append({"link": link, "text": visible_text})
except requests.exceptions.RequestException as e:
print(f"Error fetching or processing {link}: {e}")
all_results.append({"link": link, "text": None})
else:
all_results.append({"link": None, "text": None})
print(all_results)
return all_results
# Speech Recognition Model Configuration
model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25"
sample_rate = 16000
# Download preprocessor, encoder and tokenizer
preprocessor = torch.jit.load(hf_hub_download(model_name, "preprocessor.ts", subfolder="onnx"))
encoder = ort.InferenceSession(hf_hub_download(model_name, "model.onnx", subfolder="onnx"))
tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx"))
# Mistral Model Configuration
client1 = InferenceClient("mistralai/Mistral-7B-Instruct-v0.2")
system_instructions1 = "<s>[SYSTEM] Answer as OpenGPT 4o, Made by 'KingNish', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses. The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"
def resample(audio_fp32, sr):
return soxr.resample(audio_fp32, sr, sample_rate)
def to_float32(audio_buffer):
return np.divide(audio_buffer, np.iinfo(audio_buffer.dtype).max, dtype=np.float32)
def transcribe(audio_path):
audio_file = AudioSegment.from_file(audio_path)
sr = audio_file.frame_rate
audio_buffer = np.array(audio_file.get_array_of_samples())
audio_fp32 = to_float32(audio_buffer)
audio_16k = resample(audio_fp32, sr)
input_signal = torch.tensor(audio_16k).unsqueeze(0)
length = torch.tensor(len(audio_16k)).unsqueeze(0)
processed_signal, _ = preprocessor.forward(input_signal=input_signal, length=length)
logits = encoder.run(None, {'audio_signal': processed_signal.numpy(), 'length': length.numpy()})[0][0]
blank_id = tokenizer.vocab_size()
decoded_prediction = [p for p in logits.argmax(axis=1).tolist() if p != blank_id]
text = tokenizer.decode_ids(decoded_prediction)
return text
def model(text, web_search, max_tokens, temperature):
if web_search is True:
"""Performs a web search, feeds the results to a language model, and returns the answer."""
web_results = search(text)
web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
formatted_prompt = system_instructions1 + text + "[WEB]" + str(web2) + "[OpenGPT 4o]"
stream = client1.text_generation(formatted_prompt, max_new_tokens=max_tokens, temperature=temperature, stream=True, details=True, return_full_text=False)
return "".join([response.token.text for response in stream if response.token.text != "</s>"])
else:
formatted_prompt = system_instructions1 + text + "[OpenGPT 4o]"
stream = client1.text_generation(formatted_prompt, max_new_tokens=max_tokens, temperature=temperature, stream=True, details=True, return_full_text=False)
return "".join([response.token.text for response in stream if response.token.text != "</s>"])
async def respond(audio, web_search, voice, max_tokens, temperature):
user = transcribe(audio)
reply = model(user, web_search, max_tokens, temperature)
communicate = edge_tts.Communicate(reply, voice=voice)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
return tmp_path, user, reply
# List of available voices for edge_tts
voices = ["en-US-JennyNeural", "en-US-GuyNeural", "en-GB-SoniaNeural", "en-AU-NatashaNeural"]
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# ποΈ **OpenGPT 4o - Advanced Voice Assistant**")
with gr.Tabs():
with gr.TabItem("Conversation"):
with gr.Row():
with gr.Column():
audio_input = gr.Audio(label="π€ Speak or Upload Audio", sources="microphone", type="filepath")
web_search = gr.Checkbox(label="π Enable Web Search", value=False)
voice = gr.Dropdown(label="π€ Choose Voice", choices=voices, value="en-US-JennyNeural")
max_tokens = gr.Slider(minimum=50, maximum=500, value=300, label="Max Tokens")
temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, label="Temperature")
with gr.Column():
audio_output = gr.Audio(label="π€ AI Response", autoplay=True)
user_text = gr.Textbox(label="π€ You Said", interactive=False)
ai_text = gr.Textbox(label="π€ AI Response", interactive=False)
with gr.TabItem("History"):
history = gr.Dataframe(headers=["User Input", "AI Response"], interactive=False)
with gr.TabItem("Settings"):
gr.Markdown("### βοΈ Settings")
gr.Markdown("Adjust the parameters to customize the AI's behavior.")
# Store conversation history
conversation_history = []
def update_history(user_input, ai_response):
conversation_history.append([user_input, ai_response])
return conversation_history
# Automatically submit when audio is detected
audio_input.change(
fn=respond,
inputs=[audio_input, web_search, voice, max_tokens, temperature],
outputs=[audio_output, user_text, ai_text]
).then(
fn=update_history,
inputs=[user_text, ai_text],
outputs=history
)
if __name__ == "__main__":
demo.queue(max_size=200).launch() |