Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import pipeline
|
3 |
import torch
|
4 |
from PIL import Image
|
5 |
import numpy as np
|
@@ -17,20 +17,19 @@ def load_models():
|
|
17 |
# Carregando modelos específicos para feridas
|
18 |
wound_classifier = pipeline(
|
19 |
"image-classification",
|
20 |
-
model="stevhliu/wound-classification",
|
21 |
device=0 if torch.cuda.is_available() else -1
|
22 |
)
|
23 |
|
24 |
tissue_classifier = pipeline(
|
25 |
"image-classification",
|
26 |
-
model="viktorcikojevic/wound-tissue-type",
|
27 |
device=0 if torch.cuda.is_available() else -1
|
28 |
)
|
29 |
|
30 |
return wound_classifier, tissue_classifier
|
31 |
|
32 |
def preprocess_image(image):
|
33 |
-
# Normalização e pré-processamento da imagem
|
34 |
if isinstance(image, np.ndarray):
|
35 |
image = Image.fromarray(image)
|
36 |
image = image.convert('RGB')
|
@@ -49,14 +48,13 @@ def classify_wound(image):
|
|
49 |
# Classificação do tipo de tecido
|
50 |
tissue_results = tissue_classifier(processed_image)
|
51 |
|
52 |
-
# Formatando resultados
|
53 |
wound_formatted = []
|
54 |
for result in wound_results:
|
55 |
label = WOUND_TYPES.get(result['label'], result['label'])
|
56 |
score = result['score']
|
57 |
wound_formatted.append((label, score))
|
58 |
|
59 |
-
# Formatando resultados da classificação de tecidos
|
60 |
tissue_formatted = []
|
61 |
for result in tissue_results:
|
62 |
label = result['label'].replace('_', ' ').title()
|
@@ -65,7 +63,7 @@ def classify_wound(image):
|
|
65 |
|
66 |
return wound_formatted, tissue_formatted
|
67 |
|
68 |
-
#
|
69 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
70 |
gr.Markdown("""
|
71 |
# 🏥 Classificador Especializado de Feridas
|
@@ -77,8 +75,7 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
77 |
with gr.Column():
|
78 |
input_image = gr.Image(
|
79 |
label="Upload da Imagem",
|
80 |
-
type="pil"
|
81 |
-
tool="select"
|
82 |
)
|
83 |
submit_btn = gr.Button("Analisar Ferida", variant="primary", size="lg")
|
84 |
|
@@ -121,16 +118,6 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
121 |
inputs=input_image,
|
122 |
outputs=[wound_output, tissue_output]
|
123 |
)
|
124 |
-
|
125 |
-
# Exemplos
|
126 |
-
gr.Examples(
|
127 |
-
examples=[
|
128 |
-
["image1.jpg"]
|
129 |
-
],
|
130 |
-
inputs=input_image,
|
131 |
-
outputs=[wound_output, tissue_output],
|
132 |
-
cache_examples=True
|
133 |
-
)
|
134 |
|
135 |
if __name__ == "__main__":
|
136 |
-
demo.launch(
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
import torch
|
4 |
from PIL import Image
|
5 |
import numpy as np
|
|
|
17 |
# Carregando modelos específicos para feridas
|
18 |
wound_classifier = pipeline(
|
19 |
"image-classification",
|
20 |
+
model="stevhliu/wound-classification",
|
21 |
device=0 if torch.cuda.is_available() else -1
|
22 |
)
|
23 |
|
24 |
tissue_classifier = pipeline(
|
25 |
"image-classification",
|
26 |
+
model="viktorcikojevic/wound-tissue-type",
|
27 |
device=0 if torch.cuda.is_available() else -1
|
28 |
)
|
29 |
|
30 |
return wound_classifier, tissue_classifier
|
31 |
|
32 |
def preprocess_image(image):
|
|
|
33 |
if isinstance(image, np.ndarray):
|
34 |
image = Image.fromarray(image)
|
35 |
image = image.convert('RGB')
|
|
|
48 |
# Classificação do tipo de tecido
|
49 |
tissue_results = tissue_classifier(processed_image)
|
50 |
|
51 |
+
# Formatando resultados
|
52 |
wound_formatted = []
|
53 |
for result in wound_results:
|
54 |
label = WOUND_TYPES.get(result['label'], result['label'])
|
55 |
score = result['score']
|
56 |
wound_formatted.append((label, score))
|
57 |
|
|
|
58 |
tissue_formatted = []
|
59 |
for result in tissue_results:
|
60 |
label = result['label'].replace('_', ' ').title()
|
|
|
63 |
|
64 |
return wound_formatted, tissue_formatted
|
65 |
|
66 |
+
# Interface Gradio
|
67 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
68 |
gr.Markdown("""
|
69 |
# 🏥 Classificador Especializado de Feridas
|
|
|
75 |
with gr.Column():
|
76 |
input_image = gr.Image(
|
77 |
label="Upload da Imagem",
|
78 |
+
type="pil"
|
|
|
79 |
)
|
80 |
submit_btn = gr.Button("Analisar Ferida", variant="primary", size="lg")
|
81 |
|
|
|
118 |
inputs=input_image,
|
119 |
outputs=[wound_output, tissue_output]
|
120 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
if __name__ == "__main__":
|
123 |
+
demo.launch()
|