Spaces:
Runtime error
Runtime error
import os | |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # Suppress TensorFlow warnings | |
import gradio as gr | |
import tensorflow as tf | |
from tensorflow.keras.models import load_model | |
import numpy as np | |
from PIL import Image | |
import requests | |
import json | |
# ================== MODEL LOADING ================== | |
try: | |
model = load_model('wound_classifier_model_googlenet.h5') | |
print("✅ Model loaded successfully") | |
except Exception as e: | |
raise RuntimeError(f"❌ Model loading failed: {str(e)}") | |
# ================== CLASS LABELS ================== | |
CLASS_LABELS = [ | |
"Abrasions", "Bruises", "Burns", "Cut", "Diabetic Wounds", "Gingivitis", | |
"Surgical Wounds", "Venous Wounds", "athlete foot", "cellulitis", | |
"chickenpox", "cutaneous larva migrans", "impetigo", "nail fungus", | |
"ringworm", "shingles", "tooth discoloration", "ulcer" | |
] | |
# Verify model compatibility | |
assert len(CLASS_LABELS) == model.output_shape[-1], \ | |
f"Class mismatch: Model expects {model.output_shape[-1]} classes, found {len(CLASS_LABELS)}" | |
# ================== OPENROUTER CONFIG ================== | |
OPENROUTER_API_KEY = "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" | |
OPENROUTER_API_URL = "https://openrouter.ai/api/v1/chat/completions" | |
MODEL_NAME = "mistralai/mistral-7b-instruct" | |
# ================== IMAGE PROCESSING ================== | |
def preprocess_image(image, target_size=(224, 224)): | |
"""Process and validate input images""" | |
try: | |
if not image: | |
raise ValueError("🚨 No image provided") | |
image = image.convert("RGB").resize(target_size) | |
array = np.array(image) / 255.0 | |
print(f"🖼️ Image processed: Shape {array.shape}") | |
return array | |
except Exception as e: | |
raise RuntimeError(f"🖼️ Image processing failed: {str(e)}") | |
# ================== MEDICAL GUIDELINES ================== | |
def get_medical_guidelines(wound_type): | |
"""Fetch treatment guidelines from OpenRouter API""" | |
headers = { | |
"Authorization": f"Bearer {OPENROUTER_API_KEY}", | |
"Content-Type": "application/json", | |
"HTTP-Referer": "https://huggingface.co/spaces/MahatirTusher/Wound_Treatment" | |
} | |
prompt = f"""As a medical expert, provide treatment guidelines for {wound_type}: | |
- First aid steps | |
- Precautions | |
- When to seek professional help | |
Use clear, simple language without markdown.""" | |
try: | |
print(f"📡 Sending API request for {wound_type}...") | |
response = requests.post( | |
OPENROUTER_API_URL, | |
headers=headers, | |
json={ | |
"model": MODEL_NAME, | |
"messages": [{"role": "user", "content": prompt}], | |
"temperature": 0.5 | |
}, | |
timeout=20 | |
) | |
response.raise_for_status() | |
result = response.json() | |
print("🔧 Raw API response:", json.dumps(result, indent=2)) | |
if not result.get("choices"): | |
return "⚠️ API response format unexpected" | |
return result["choices"][0]["message"]["content"] | |
except Exception as e: | |
return f"⚠️ Guidelines unavailable: {str(e)}" | |
# ================== MAIN PREDICTION ================== | |
def predict(image): | |
"""Complete prediction pipeline""" | |
try: | |
# Preprocess image | |
processed_img = preprocess_image(image) | |
input_tensor = np.expand_dims(processed_img, axis=0) | |
# Make prediction | |
predictions = model.predict(input_tensor)[0] | |
sorted_indices = np.argsort(predictions)[::-1] # Descending order | |
# Format results | |
results = { | |
CLASS_LABELS[i]: float(predictions[i]) | |
for i in sorted_indices[:3] # Top 3 predictions | |
} | |
top_class = CLASS_LABELS[sorted_indices[0]] | |
# Get guidelines | |
guidelines = get_medical_guidelines(top_class) | |
return results, guidelines | |
except Exception as e: | |
return {f"🚨 Error": str(e)}, "" | |
# ================== GRADIO INTERFACE ================== | |
def create_interface(): | |
with gr.Blocks(title="AI Wound Classifier") as demo: | |
gr.Markdown("# 🩹 AI-Powered Wound Classification System") | |
gr.Markdown("Upload a wound image or take a photo using your camera") | |
file_input = gr.Image(type="pil", label="Upload Wound Image") | |
submit_btn = gr.Button("Analyze Now", variant="primary") | |
output_label = gr.Label(label="Top Predictions", num_top_classes=3) | |
output_guidelines = gr.Textbox(label="Treatment Guidelines", lines=8) | |
# Connect input to processing | |
submit_btn.click( | |
fn=predict, | |
inputs=[file_input], | |
outputs=[output_label, output_guidelines] | |
) | |
return demo | |
if __name__ == "__main__": | |
iface = create_interface() | |
iface.launch( | |
server_name="0.0.0.0", | |
server_port=7860, | |
share=True # Set to False if you do not want a public link | |
) | |