Spaces:
Runtime error
Runtime error
Upload 5 models
Browse files- Dockerfile +15 -0
- app.py +68 -0
- classes.txt +18 -0
- requirements.txt +0 -0
- wound_classifier_model_googlenet.h5 +3 -0
Dockerfile
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
FROM python:3.8-slim
|
3 |
+
|
4 |
+
|
5 |
+
WORKDIR /app
|
6 |
+
|
7 |
+
COPY requirements.txt requirements.txt
|
8 |
+
|
9 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
10 |
+
|
11 |
+
COPY . .
|
12 |
+
|
13 |
+
EXPOSE 7860
|
14 |
+
|
15 |
+
CMD ["python", "app.py"]
|
app.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
from tensorflow.keras.models import load_model
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
# Load the model
|
8 |
+
try:
|
9 |
+
model = load_model('wound_classifier_model_googlenet.h5')
|
10 |
+
except Exception as e:
|
11 |
+
raise RuntimeError(f"Error loading model: {e}")
|
12 |
+
|
13 |
+
# Define the input shape
|
14 |
+
input_shape = (224, 224, 3)
|
15 |
+
|
16 |
+
def preprocess_image(image, target_size):
|
17 |
+
"""
|
18 |
+
Preprocess the input image for the model.
|
19 |
+
- Resize the image to the target size.
|
20 |
+
- Normalize pixel values to the range [0, 1].
|
21 |
+
"""
|
22 |
+
if image is None:
|
23 |
+
raise ValueError("No image provided")
|
24 |
+
image = image.convert("RGB") # Ensure the image is in RGB mode
|
25 |
+
image = image.resize(target_size)
|
26 |
+
image_array = np.array(image)
|
27 |
+
image_array = image_array / 255.0 # Normalize the image
|
28 |
+
return image_array
|
29 |
+
|
30 |
+
def predict(image):
|
31 |
+
"""
|
32 |
+
Predict the class probabilities for the input image.
|
33 |
+
- Preprocess the image.
|
34 |
+
- Predict using the loaded model.
|
35 |
+
- Return results as a dictionary with class labels and probabilities.
|
36 |
+
"""
|
37 |
+
try:
|
38 |
+
# Preprocess the image
|
39 |
+
input_data = preprocess_image(image, (input_shape[0], input_shape[1]))
|
40 |
+
input_data = np.expand_dims(input_data, axis=0) # Add batch dimension
|
41 |
+
|
42 |
+
# Load class labels
|
43 |
+
try:
|
44 |
+
with open('./classes.txt', 'r') as file:
|
45 |
+
class_labels = file.read().splitlines()
|
46 |
+
except FileNotFoundError:
|
47 |
+
raise RuntimeError("Class labels file 'classes.txt' not found.")
|
48 |
+
|
49 |
+
if len(class_labels) != model.output_shape[-1]:
|
50 |
+
raise ValueError("Mismatch between model output and class labels.")
|
51 |
+
|
52 |
+
# Predict probabilities
|
53 |
+
predictions = model.predict(input_data)
|
54 |
+
results = {class_labels[i]: float(predictions[0][i]) for i in range(len(class_labels))}
|
55 |
+
return results
|
56 |
+
except Exception as e:
|
57 |
+
return {"error": str(e)}
|
58 |
+
|
59 |
+
# Create a Gradio interface
|
60 |
+
iface = gr.Interface(
|
61 |
+
fn=predict,
|
62 |
+
inputs=gr.Image(type="pil"),
|
63 |
+
outputs=gr.Label(num_top_classes=18), # Adjust num_top_classes as needed
|
64 |
+
live=True
|
65 |
+
)
|
66 |
+
|
67 |
+
# Launch the Gradio interface
|
68 |
+
iface.launch(server_name="0.0.0.0", server_port=7860)
|
classes.txt
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Abrasions: 0
|
2 |
+
Bruises: 1
|
3 |
+
Burns: 2
|
4 |
+
Cut: 3
|
5 |
+
Diabetic Wounds: 4
|
6 |
+
Gingivitis: 5
|
7 |
+
Surgical Wounds: 6
|
8 |
+
Venous Wounds: 7
|
9 |
+
athlete foot: 8
|
10 |
+
cellulitis: 9
|
11 |
+
chickenpox: 10
|
12 |
+
cutaneous larva migrans: 11
|
13 |
+
impetigo: 12
|
14 |
+
nail fungus: 13
|
15 |
+
ringworm: 14
|
16 |
+
shingles: 15
|
17 |
+
tooth discoloration: 16
|
18 |
+
ulcer: 17
|
requirements.txt
ADDED
Binary file (320 Bytes). View file
|
|
wound_classifier_model_googlenet.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9f89fe0041825789e66caf712515f1265f43b05b5b843db2da5840f30a7abcbe
|
3 |
+
size 113524192
|