Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -15,67 +15,84 @@ except Exception as e:
|
|
15 |
# OpenRouter.ai Configuration
|
16 |
OPENROUTER_API_KEY = "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"
|
17 |
OPENROUTER_API_URL = "https://openrouter.ai/api/v1/chat/completions"
|
18 |
-
MODEL_NAME = "mistralai/mistral-small-24b-instruct-2501:free"
|
19 |
|
|
|
20 |
input_shape = (224, 224, 3)
|
21 |
|
22 |
def preprocess_image(image, target_size):
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
def get_medical_guidelines(wound_type):
|
26 |
-
"""
|
27 |
-
Fetch medical guidelines using OpenRouter.ai's Mistral model.
|
28 |
-
"""
|
29 |
headers = {
|
30 |
"Authorization": f"Bearer {OPENROUTER_API_KEY}",
|
31 |
"Content-Type": "application/json",
|
32 |
-
"HTTP-Referer": "https://
|
33 |
-
"X-Title": "
|
34 |
}
|
35 |
|
36 |
-
prompt = f"""
|
37 |
-
|
38 |
-
Include steps for first aid, precautions, and when to seek professional help.
|
39 |
-
"""
|
40 |
|
41 |
data = {
|
42 |
"model": MODEL_NAME,
|
43 |
"messages": [{"role": "user", "content": prompt}],
|
44 |
-
"temperature": 0.7
|
45 |
}
|
46 |
|
47 |
try:
|
48 |
response = requests.post(OPENROUTER_API_URL, headers=headers, json=data)
|
49 |
response.raise_for_status()
|
50 |
-
|
51 |
-
return result["choices"][0]["message"]["content"]
|
52 |
except Exception as e:
|
53 |
return f"Error fetching guidelines: {str(e)}"
|
54 |
|
55 |
def predict(image):
|
|
|
56 |
try:
|
57 |
-
#
|
|
|
|
|
58 |
|
59 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
guidelines = get_medical_guidelines(predicted_class)
|
61 |
-
|
62 |
-
return {
|
63 |
-
|
64 |
-
"treatment_guidelines": guidelines # From OpenRouter.ai
|
65 |
-
}
|
66 |
-
|
67 |
except Exception as e:
|
68 |
return {"error": str(e)}
|
69 |
|
70 |
-
#
|
71 |
iface = gr.Interface(
|
72 |
fn=predict,
|
73 |
inputs=gr.Image(type="pil"),
|
74 |
outputs=[
|
75 |
-
gr.Label(num_top_classes=
|
76 |
gr.Textbox(label="Medical Guidelines", lines=5)
|
77 |
],
|
78 |
-
live=True
|
|
|
|
|
79 |
)
|
80 |
|
81 |
iface.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
15 |
# OpenRouter.ai Configuration
|
16 |
OPENROUTER_API_KEY = "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"
|
17 |
OPENROUTER_API_URL = "https://openrouter.ai/api/v1/chat/completions"
|
18 |
+
MODEL_NAME = "mistralai/mistral-small-24b-instruct-2501:free"
|
19 |
|
20 |
+
# Define input shape
|
21 |
input_shape = (224, 224, 3)
|
22 |
|
23 |
def preprocess_image(image, target_size):
|
24 |
+
"""Preprocess the input image for the model."""
|
25 |
+
if image is None:
|
26 |
+
raise ValueError("No image provided")
|
27 |
+
image = image.convert("RGB") # Ensure RGB format
|
28 |
+
image = image.resize(target_size)
|
29 |
+
image_array = np.array(image)
|
30 |
+
image_array = image_array / 255.0 # Normalize
|
31 |
+
return image_array
|
32 |
|
33 |
def get_medical_guidelines(wound_type):
|
34 |
+
"""Fetch medical guidelines using OpenRouter.ai's API."""
|
|
|
|
|
35 |
headers = {
|
36 |
"Authorization": f"Bearer {OPENROUTER_API_KEY}",
|
37 |
"Content-Type": "application/json",
|
38 |
+
"HTTP-Referer": "https://huggingface.co/spaces/MahatirTusher/Wound_Treatment",
|
39 |
+
"X-Title": "Wound_Treatment"
|
40 |
}
|
41 |
|
42 |
+
prompt = f"""As a medical professional, provide detailed guidelines for treating a {wound_type} wound.
|
43 |
+
Include first aid steps, precautions, and when to seek professional help."""
|
|
|
|
|
44 |
|
45 |
data = {
|
46 |
"model": MODEL_NAME,
|
47 |
"messages": [{"role": "user", "content": prompt}],
|
48 |
+
"temperature": 0.7
|
49 |
}
|
50 |
|
51 |
try:
|
52 |
response = requests.post(OPENROUTER_API_URL, headers=headers, json=data)
|
53 |
response.raise_for_status()
|
54 |
+
return response.json()["choices"][0]["message"]["content"]
|
|
|
55 |
except Exception as e:
|
56 |
return f"Error fetching guidelines: {str(e)}"
|
57 |
|
58 |
def predict(image):
|
59 |
+
"""Main prediction function."""
|
60 |
try:
|
61 |
+
# Preprocess image
|
62 |
+
input_data = preprocess_image(image, (input_shape[0], input_shape[1]))
|
63 |
+
input_data = np.expand_dims(input_data, axis=0)
|
64 |
|
65 |
+
# Load class labels
|
66 |
+
with open('./classes.txt', 'r') as file:
|
67 |
+
class_labels = file.read().splitlines()
|
68 |
+
|
69 |
+
if len(class_labels) != model.output_shape[-1]:
|
70 |
+
raise ValueError("Class labels mismatch with model output")
|
71 |
+
|
72 |
+
# Make prediction
|
73 |
+
predictions = model.predict(input_data)
|
74 |
+
results = {class_labels[i]: float(predictions[0][i]) for i in range(len(class_labels))}
|
75 |
+
predicted_class = class_labels[np.argmax(predictions)]
|
76 |
+
|
77 |
+
# Get medical guidelines
|
78 |
guidelines = get_medical_guidelines(predicted_class)
|
79 |
+
|
80 |
+
return {"predictions": results, "treatment_guidelines": guidelines}
|
81 |
+
|
|
|
|
|
|
|
82 |
except Exception as e:
|
83 |
return {"error": str(e)}
|
84 |
|
85 |
+
# Gradio Interface
|
86 |
iface = gr.Interface(
|
87 |
fn=predict,
|
88 |
inputs=gr.Image(type="pil"),
|
89 |
outputs=[
|
90 |
+
gr.Label(num_top_classes=3, label="Classification Results"),
|
91 |
gr.Textbox(label="Medical Guidelines", lines=5)
|
92 |
],
|
93 |
+
live=True,
|
94 |
+
title="Wound Classification & Treatment Advisor",
|
95 |
+
description="Upload a wound image for classification and medical guidelines."
|
96 |
)
|
97 |
|
98 |
iface.launch(server_name="0.0.0.0", server_port=7860)
|