File size: 17,159 Bytes
231edce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.


"""Video models."""

import math
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.init import trunc_normal_


# import slowfast.utils.weight_init_helper as init_helper
from .attention import MultiScaleBlock
# from slowfast.models.batchnorm_helper import get_norm
from .common import TwoStreamFusion
from .reversible_mvit import ReversibleMViT
from .utils import (
    calc_mvit_feature_geometry,
    get_3d_sincos_pos_embed,
    round_width,
    validate_checkpoint_wrapper_import,
)

from . import head_helper, stem_helper  # noqae


class MViT(nn.Module):
    """
    Model builder for MViTv1 and MViTv2.

    "MViTv2: Improved Multiscale Vision Transformers for Classification and Detection"
    Yanghao Li, Chao-Yuan Wu, Haoqi Fan, Karttikeya Mangalam, Bo Xiong, Jitendra Malik, Christoph Feichtenhofer
    https://arxiv.org/abs/2112.01526
    "Multiscale Vision Transformers"
    Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li, Zhicheng Yan, Jitendra Malik, Christoph Feichtenhofer
    https://arxiv.org/abs/2104.11227
    """

    def __init__(self, cfg):
        super().__init__()
        # Get parameters.
        assert cfg.DATA.TRAIN_CROP_SIZE == cfg.DATA.TEST_CROP_SIZE
        self.cfg = cfg
        pool_first = cfg.MVIT.POOL_FIRST
        # Prepare input.
        spatial_size = cfg.DATA.TRAIN_CROP_SIZE
        temporal_size = cfg.DATA.NUM_FRAMES
        in_chans = cfg.DATA.INPUT_CHANNEL_NUM[0]
        self.use_2d_patch = cfg.MVIT.PATCH_2D
        self.enable_detection = cfg.DETECTION.ENABLE
        self.enable_rev = cfg.MVIT.REV.ENABLE
        self.patch_stride = cfg.MVIT.PATCH_STRIDE
        if self.use_2d_patch:
            self.patch_stride = [1] + self.patch_stride
        self.T = cfg.DATA.NUM_FRAMES // self.patch_stride[0]
        self.H = cfg.DATA.TRAIN_CROP_SIZE // self.patch_stride[1]
        self.W = cfg.DATA.TRAIN_CROP_SIZE // self.patch_stride[2]
        # Prepare output.
        num_classes = cfg.MODEL.NUM_CLASSES
        embed_dim = cfg.MVIT.EMBED_DIM
        # Prepare backbone
        num_heads = cfg.MVIT.NUM_HEADS
        mlp_ratio = cfg.MVIT.MLP_RATIO
        qkv_bias = cfg.MVIT.QKV_BIAS
        self.drop_rate = cfg.MVIT.DROPOUT_RATE
        depth = cfg.MVIT.DEPTH
        drop_path_rate = cfg.MVIT.DROPPATH_RATE
        layer_scale_init_value = cfg.MVIT.LAYER_SCALE_INIT_VALUE
        head_init_scale = cfg.MVIT.HEAD_INIT_SCALE
        mode = cfg.MVIT.MODE
        self.cls_embed_on = cfg.MVIT.CLS_EMBED_ON
        self.use_mean_pooling = cfg.MVIT.USE_MEAN_POOLING
        # Params for positional embedding
        self.use_abs_pos = cfg.MVIT.USE_ABS_POS
        self.use_fixed_sincos_pos = cfg.MVIT.USE_FIXED_SINCOS_POS
        self.sep_pos_embed = cfg.MVIT.SEP_POS_EMBED
        self.rel_pos_spatial = cfg.MVIT.REL_POS_SPATIAL
        self.rel_pos_temporal = cfg.MVIT.REL_POS_TEMPORAL
        if cfg.MVIT.NORM == "layernorm":
            norm_layer = partial(nn.LayerNorm, eps=1e-6)
        else:
            raise NotImplementedError("Only supports layernorm.")
        self.num_classes = num_classes
        self.patch_embed = stem_helper.PatchEmbed(
            dim_in=in_chans,
            dim_out=embed_dim,
            kernel=cfg.MVIT.PATCH_KERNEL,
            stride=cfg.MVIT.PATCH_STRIDE,
            padding=cfg.MVIT.PATCH_PADDING,
            conv_2d=self.use_2d_patch,
        )

        self.input_dims = [temporal_size, spatial_size, spatial_size]
        assert self.input_dims[1] == self.input_dims[2]
        self.patch_dims = [
            self.input_dims[i] // self.patch_stride[i]
            for i in range(len(self.input_dims))
        ]
        num_patches = math.prod(self.patch_dims)

        dpr = [
            x.item() for x in torch.linspace(0, drop_path_rate, depth)
        ]  # stochastic depth decay rule

        if self.cls_embed_on:
            self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
            pos_embed_dim = num_patches + 1
        else:
            pos_embed_dim = num_patches

        if self.use_abs_pos:
            if self.sep_pos_embed:
                self.pos_embed_spatial = nn.Parameter(
                    torch.zeros(
                        1, self.patch_dims[1] * self.patch_dims[2], embed_dim
                    )
                )
                self.pos_embed_temporal = nn.Parameter(
                    torch.zeros(1, self.patch_dims[0], embed_dim)
                )
                if self.cls_embed_on:
                    self.pos_embed_class = nn.Parameter(
                        torch.zeros(1, 1, embed_dim)
                    )
            else:
                self.pos_embed = nn.Parameter(
                    torch.zeros(
                        1,
                        pos_embed_dim,
                        embed_dim,
                    ),
                    requires_grad=not self.use_fixed_sincos_pos,
                )

        if self.drop_rate > 0.0:
            self.pos_drop = nn.Dropout(p=self.drop_rate)

        dim_mul, head_mul = torch.ones(depth + 1), torch.ones(depth + 1)
        for i in range(len(cfg.MVIT.DIM_MUL)):
            dim_mul[cfg.MVIT.DIM_MUL[i][0]] = cfg.MVIT.DIM_MUL[i][1]
        for i in range(len(cfg.MVIT.HEAD_MUL)):
            head_mul[cfg.MVIT.HEAD_MUL[i][0]] = cfg.MVIT.HEAD_MUL[i][1]

        pool_q = [[] for i in range(cfg.MVIT.DEPTH)]
        pool_kv = [[] for i in range(cfg.MVIT.DEPTH)]
        stride_q = [[] for i in range(cfg.MVIT.DEPTH)]
        stride_kv = [[] for i in range(cfg.MVIT.DEPTH)]

        for i in range(len(cfg.MVIT.POOL_Q_STRIDE)):
            stride_q[cfg.MVIT.POOL_Q_STRIDE[i][0]] = cfg.MVIT.POOL_Q_STRIDE[i][
                1:
            ]
            if cfg.MVIT.POOL_KVQ_KERNEL is not None:
                pool_q[cfg.MVIT.POOL_Q_STRIDE[i][0]] = cfg.MVIT.POOL_KVQ_KERNEL
            else:
                pool_q[cfg.MVIT.POOL_Q_STRIDE[i][0]] = [
                    s + 1 if s > 1 else s for s in cfg.MVIT.POOL_Q_STRIDE[i][1:]
                ]

        # If POOL_KV_STRIDE_ADAPTIVE is not None, initialize POOL_KV_STRIDE.
        if cfg.MVIT.POOL_KV_STRIDE_ADAPTIVE is not None:
            _stride_kv = cfg.MVIT.POOL_KV_STRIDE_ADAPTIVE
            cfg.MVIT.POOL_KV_STRIDE = []
            for i in range(cfg.MVIT.DEPTH):
                if len(stride_q[i]) > 0:
                    _stride_kv = [
                        max(_stride_kv[d] // stride_q[i][d], 1)
                        for d in range(len(_stride_kv))
                    ]
                cfg.MVIT.POOL_KV_STRIDE.append([i] + _stride_kv)

        for i in range(len(cfg.MVIT.POOL_KV_STRIDE)):
            stride_kv[cfg.MVIT.POOL_KV_STRIDE[i][0]] = cfg.MVIT.POOL_KV_STRIDE[
                i
            ][1:]
            if cfg.MVIT.POOL_KVQ_KERNEL is not None:
                pool_kv[
                    cfg.MVIT.POOL_KV_STRIDE[i][0]
                ] = cfg.MVIT.POOL_KVQ_KERNEL
            else:
                pool_kv[cfg.MVIT.POOL_KV_STRIDE[i][0]] = [
                    s + 1 if s > 1 else s
                    for s in cfg.MVIT.POOL_KV_STRIDE[i][1:]
                ]

        self.pool_q = pool_q
        self.pool_kv = pool_kv
        self.stride_q = stride_q
        self.stride_kv = stride_kv

        self.norm_stem = norm_layer(embed_dim) if cfg.MVIT.NORM_STEM else None

        input_size = self.patch_dims

        if self.enable_rev:

            # rev does not allow cls token
            assert not self.cls_embed_on

            self.rev_backbone = ReversibleMViT(cfg, self)

            embed_dim = round_width(
                embed_dim, dim_mul.prod(), divisor=num_heads
            )

            self.fuse = TwoStreamFusion(
                cfg.MVIT.REV.RESPATH_FUSE, dim=2 * embed_dim
            )

            if "concat" in self.cfg.MVIT.REV.RESPATH_FUSE:
                self.norm = norm_layer(2 * embed_dim)
            else:
                self.norm = norm_layer(embed_dim)

        else:

            self.blocks = nn.ModuleList()

            for i in range(depth):
                num_heads = round_width(num_heads, head_mul[i])
                if cfg.MVIT.DIM_MUL_IN_ATT:
                    dim_out = round_width(
                        embed_dim,
                        dim_mul[i],
                        divisor=round_width(num_heads, head_mul[i]),
                    )
                else:
                    dim_out = round_width(
                        embed_dim,
                        dim_mul[i + 1],
                        divisor=round_width(num_heads, head_mul[i + 1]),
                    )
                attention_block = MultiScaleBlock(
                    dim=embed_dim,
                    dim_out=dim_out,
                    num_heads=num_heads,
                    input_size=input_size,
                    mlp_ratio=mlp_ratio,
                    qkv_bias=qkv_bias,
                    drop_rate=self.drop_rate,
                    drop_path=dpr[i],
                    norm_layer=norm_layer,
                    kernel_q=pool_q[i] if len(pool_q) > i else [],
                    kernel_kv=pool_kv[i] if len(pool_kv) > i else [],
                    stride_q=stride_q[i] if len(stride_q) > i else [],
                    stride_kv=stride_kv[i] if len(stride_kv) > i else [],
                    mode=mode,
                    has_cls_embed=self.cls_embed_on,
                    pool_first=pool_first,
                    rel_pos_spatial=self.rel_pos_spatial,
                    rel_pos_temporal=self.rel_pos_temporal,
                    rel_pos_zero_init=cfg.MVIT.REL_POS_ZERO_INIT,
                    residual_pooling=cfg.MVIT.RESIDUAL_POOLING,
                    dim_mul_in_att=cfg.MVIT.DIM_MUL_IN_ATT,
                    separate_qkv=cfg.MVIT.SEPARATE_QKV,
                )

                self.blocks.append(attention_block)
                if len(stride_q[i]) > 0:
                    input_size = [
                        size // stride
                        for size, stride in zip(input_size, stride_q[i])
                    ]

                embed_dim = dim_out

            self.norm = norm_layer(embed_dim)

        if self.enable_detection:
            raise Exception("Detection is not supported")
        else:
            self.head = head_helper.TransformerBasicHead(
                2 * embed_dim
                if ("concat" in cfg.MVIT.REV.RESPATH_FUSE and self.enable_rev)
                else embed_dim,
                num_classes,
                dropout_rate=cfg.MODEL.DROPOUT_RATE,
                act_func=cfg.MODEL.HEAD_ACT,
                cfg=cfg,
            )
        if self.use_abs_pos:
            if self.sep_pos_embed:
                trunc_normal_(self.pos_embed_spatial, std=0.02)
                trunc_normal_(self.pos_embed_temporal, std=0.02)
                if self.cls_embed_on:
                    trunc_normal_(self.pos_embed_class, std=0.02)
            else:
                trunc_normal_(self.pos_embed, std=0.02)
                if self.use_fixed_sincos_pos:
                    pos_embed = get_3d_sincos_pos_embed(
                        self.pos_embed.shape[-1],
                        self.H,
                        self.T,
                        cls_token=self.cls_embed_on,
                    )
                    self.pos_embed.data.copy_(
                        torch.from_numpy(pos_embed).float().unsqueeze(0)
                    )

        if self.cls_embed_on:
            trunc_normal_(self.cls_token, std=0.02)
        self.apply(self._init_weights)

        self.head.projection.weight.data.mul_(head_init_scale)
        self.head.projection.bias.data.mul_(head_init_scale)

        self.feat_size, self.feat_stride = calc_mvit_feature_geometry(cfg)

    def _init_weights(self, m):
        if isinstance(m, (nn.Linear, nn.Conv2d, nn.Conv3d)):
            nn.init.trunc_normal_(m.weight, std=0.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0.02)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0.02)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        names = []
        if self.cfg.MVIT.ZERO_DECAY_POS_CLS:
            if self.use_abs_pos:
                if self.sep_pos_embed:
                    names.extend(
                        [
                            "pos_embed_spatial",
                            "pos_embed_temporal",
                            "pos_embed_class",
                        ]
                    )
                else:
                    names.append("pos_embed")
            if self.rel_pos_spatial:
                names.extend(["rel_pos_h", "rel_pos_w", "rel_pos_hw"])
            if self.rel_pos_temporal:
                names.extend(["rel_pos_t"])
            if self.cls_embed_on:
                names.append("cls_token")

        return names

    def _get_pos_embed(self, pos_embed, bcthw):

        if len(bcthw) == 4:
            t, h, w = 1, bcthw[-2], bcthw[-1]
        else:
            t, h, w = bcthw[-3], bcthw[-2], bcthw[-1]
        if self.cls_embed_on:
            cls_pos_embed = pos_embed[:, 0:1, :]
            pos_embed = pos_embed[:, 1:]
        txy_num = pos_embed.shape[1]
        p_t, p_h, p_w = self.patch_dims
        assert p_t * p_h * p_w == txy_num

        if (p_t, p_h, p_w) != (t, h, w):
            new_pos_embed = F.interpolate(
                pos_embed[:, :, :]
                .reshape(1, p_t, p_h, p_w, -1)
                .permute(0, 4, 1, 2, 3),
                size=(t, h, w),
                mode="trilinear",
            )
            pos_embed = new_pos_embed.reshape(1, -1, t * h * w).permute(0, 2, 1)

        if self.cls_embed_on:
            pos_embed = torch.cat((cls_pos_embed, pos_embed), dim=1)

        return pos_embed

    def _forward_reversible(self, x):
        """
        Reversible specific code for forward computation.
        """
        # rev does not support cls token or detection
        assert not self.cls_embed_on
        assert not self.enable_detection

        x = self.rev_backbone(x)

        if self.use_mean_pooling:
            x = self.fuse(x)
            x = x.mean(1)
            x = self.norm(x)
        else:
            x = self.norm(x)
            x = self.fuse(x)
            x = x.mean(1)

        x = self.head(x)

        return x

    def forward(self, x, bboxes=None, return_attn=False):
        x = x[0]
        x, bcthw = self.patch_embed(x)
        bcthw = list(bcthw)
        if len(bcthw) == 4:  # Fix bcthw in case of 4D tensor
            bcthw.insert(2, torch.tensor(self.T))
        T, H, W = bcthw[-3], bcthw[-2], bcthw[-1]
        assert len(bcthw) == 5 and (T, H, W) == (self.T, self.H, self.W), bcthw
        B, N, C = x.shape
        s = 1 if self.cls_embed_on else 0
        if self.use_fixed_sincos_pos:
            x += self.pos_embed[:, s:, :]  # s: on/off cls token

        if self.cls_embed_on:
            cls_tokens = self.cls_token.expand(
                B, -1, -1
            )  # stole cls_tokens impl from Phil Wang, thanks
            if self.use_fixed_sincos_pos:
                cls_tokens = cls_tokens + self.pos_embed[:, :s, :]
            x = torch.cat((cls_tokens, x), dim=1)

        if self.use_abs_pos:
            if self.sep_pos_embed:
                pos_embed = self.pos_embed_spatial.repeat(
                    1, self.patch_dims[0], 1
                ) + torch.repeat_interleave(
                    self.pos_embed_temporal,
                    self.patch_dims[1] * self.patch_dims[2],
                    dim=1,
                )
                if self.cls_embed_on:
                    pos_embed = torch.cat([self.pos_embed_class, pos_embed], 1)
                x += self._get_pos_embed(pos_embed, bcthw)
            else:
                x += self._get_pos_embed(self.pos_embed, bcthw)

        if self.drop_rate:
            x = self.pos_drop(x)

        if self.norm_stem:
            x = self.norm_stem(x)

        thw = [T, H, W]

        if self.enable_rev:
            x = self._forward_reversible(x)

        else:
            for blk in self.blocks:
                x, thw = blk(x, thw)

            if self.enable_detection:
                assert not self.enable_rev

                x = self.norm(x)
                if self.cls_embed_on:
                    x = x[:, 1:]

                B, _, C = x.shape
                x = x.transpose(1, 2).reshape(B, C, thw[0], thw[1], thw[2])

                x = self.head([x], bboxes)

            else:
                if self.use_mean_pooling:
                    if self.cls_embed_on:
                        x = x[:, 1:]
                    x = x.mean(1)
                    x = self.norm(x)
                elif self.cls_embed_on:
                    x = self.norm(x)
                    x = x[:, 0]
                else:  # this is default, [norm->mean]
                    x = self.norm(x)
                    x = x.mean(1)
                x = self.head(x)

        return x