import torch.nn as nn from . import csn from . import r2plus1d def ir_csn_152(pretrained=True, **kwargs): model = csn.ir_csn_152(pretraining='ig65m_32frms' if pretrained else '', num_classes=359) model.avgpool = nn.Identity() model.fc = nn.Identity() return model def ir_csn_101(pretrained=True, **kwargs): model = ir_csn_152(pretrained=pretrained, **kwargs) model.layer2 = model.layer2[:4] model.layer3 = model.layer3[:23] return model def ir_csn_50(pretrained=True, **kwargs): model = ir_csn_152(pretrained=pretrained, **kwargs) model.layer2 = model.layer2[:4] model.layer3 = model.layer3[:6] return model def ip_csn_152(pretrained=True, **kwargs): model = csn.ip_csn_152(pretraining='ig65m_32frms' if pretrained else '', num_classes=359) model.avgpool = nn.Identity() model.fc = nn.Identity() return model def ip_csn_101(pretrained=True, **kwargs): model = ip_csn_152(pretrained=pretrained, **kwargs) model.layer2 = model.layer2[:4] model.layer3 = model.layer3[:23] return model def ip_csn_50(pretrained=True, **kwargs): model = ip_csn_152(pretrained=pretrained, **kwargs) model.layer2 = model.layer2[:4] model.layer3 = model.layer3[:6] return model def r2plus1d_34(pretrained=True, **kwargs): model = r2plus1d.r2plus1d_34(pretraining='32_ig65m' if pretrained else '', num_classes=359) model.avgpool = nn.Identity() model.fc = nn.Identity() return model