Update app.py
Browse files
app.py
CHANGED
@@ -20,20 +20,16 @@ def download_sam_model():
|
|
20 |
print("Download complete!")
|
21 |
return checkpoint_path
|
22 |
|
23 |
-
def process_video_sam(video_path):
|
24 |
-
# Download model if needed
|
25 |
checkpoint_path = download_sam_model()
|
26 |
|
27 |
-
# Initialize SAM
|
28 |
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
29 |
-
|
30 |
-
|
31 |
-
sam = sam_model_registry[MODEL_TYPE](checkpoint=checkpoint_path)
|
32 |
sam.to(device=DEVICE)
|
33 |
predictor = SamPredictor(sam)
|
34 |
|
35 |
-
# Process video
|
36 |
cap = cv2.VideoCapture(video_path)
|
|
|
37 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
38 |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
39 |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
@@ -44,32 +40,55 @@ def process_video_sam(video_path):
|
|
44 |
fps,
|
45 |
(width, height))
|
46 |
|
|
|
47 |
while cap.isOpened():
|
48 |
ret, frame = cap.read()
|
49 |
if not ret:
|
50 |
break
|
51 |
|
52 |
predictor.set_image(frame)
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
annotated_frame = frame.copy()
|
56 |
-
for mask in masks
|
57 |
-
annotated_frame[mask
|
58 |
|
59 |
out.write(annotated_frame)
|
60 |
|
|
|
|
|
|
|
61 |
cap.release()
|
62 |
out.release()
|
63 |
|
64 |
return output_path
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
if __name__ == "__main__":
|
75 |
-
|
|
|
20 |
print("Download complete!")
|
21 |
return checkpoint_path
|
22 |
|
23 |
+
def process_video_sam(video_path, progress=gr.Progress()):
|
|
|
24 |
checkpoint_path = download_sam_model()
|
25 |
|
|
|
26 |
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
27 |
+
sam = sam_model_registry["vit_h"](checkpoint=checkpoint_path)
|
|
|
|
|
28 |
sam.to(device=DEVICE)
|
29 |
predictor = SamPredictor(sam)
|
30 |
|
|
|
31 |
cap = cv2.VideoCapture(video_path)
|
32 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
33 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
34 |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
35 |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
|
|
40 |
fps,
|
41 |
(width, height))
|
42 |
|
43 |
+
frame_count = 0
|
44 |
while cap.isOpened():
|
45 |
ret, frame = cap.read()
|
46 |
if not ret:
|
47 |
break
|
48 |
|
49 |
predictor.set_image(frame)
|
50 |
+
# Gerar pontos de prompt automáticos
|
51 |
+
input_point = np.array([[width//2, height//2]])
|
52 |
+
input_label = np.array([1])
|
53 |
+
|
54 |
+
masks, scores, logits = predictor.predict(
|
55 |
+
point_coords=input_point,
|
56 |
+
point_labels=input_label,
|
57 |
+
multimask_output=True
|
58 |
+
)
|
59 |
|
60 |
annotated_frame = frame.copy()
|
61 |
+
for mask in masks:
|
62 |
+
annotated_frame[mask] = annotated_frame[mask] * 0.5 + np.array([0, 255, 0]) * 0.5
|
63 |
|
64 |
out.write(annotated_frame)
|
65 |
|
66 |
+
frame_count += 1
|
67 |
+
progress(frame_count/total_frames, desc="Processing video...")
|
68 |
+
|
69 |
cap.release()
|
70 |
out.release()
|
71 |
|
72 |
return output_path
|
73 |
|
74 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
75 |
+
gr.Markdown("# Video Segmentation with SAM")
|
76 |
+
gr.Markdown("Upload a video to segment objects using Segment Anything Model")
|
77 |
+
|
78 |
+
with gr.Row():
|
79 |
+
with gr.Column():
|
80 |
+
input_video = gr.Video(label="Input Video")
|
81 |
+
process_btn = gr.Button("Process Video", variant="primary")
|
82 |
+
|
83 |
+
with gr.Column():
|
84 |
+
output_video = gr.Video(label="Segmented Video")
|
85 |
+
|
86 |
+
process_btn.click(
|
87 |
+
fn=process_video_sam,
|
88 |
+
inputs=input_video,
|
89 |
+
outputs=output_video,
|
90 |
+
api_name="segment_video"
|
91 |
+
)
|
92 |
|
93 |
if __name__ == "__main__":
|
94 |
+
demo.launch()
|