Spaces:
Sleeping
Sleeping
File size: 17,904 Bytes
7453f77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
from gradio_client import Client
from langchain_community.document_loaders import PyPDFDirectoryLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from sentence_transformers import SentenceTransformer
from rank_bm25 import BM25Okapi
import faiss
import re
import os
import sys
import time
import json
import numpy as np
import logging
from typing import List, Dict, Tuple, Optional
from PyPDF2 import PdfReader
from colorama import Fore, Style
from datetime import datetime
from sklearn.metrics.pairwise import cosine_similarity
class MetrologyRAGSystem:
def __init__(self, config: Optional[Dict] = None):
self.config = self._load_default_config(config)
self.embedder = SentenceTransformer(self.config['embedding_model'])
self.client = Client(self.config['api_endpoint'])
self.documents = []
self.faiss_index = None
self.bm25 = None
self._init_logger()
def _load_default_config(self, config: Dict) -> Dict:
default_config = {
'embedding_model': 'all-MiniLM-L6-v2',
'chunk_size': 1600,
'chunk_overlap': 450,
'top_k': 7,
'max_retries': 5,
'hybrid_ratio': 0.6,
'allowed_file_types': ['.pdf'],
'api_endpoint': "yuntian-deng/ChatGPT",
'required_norms': ['ISO/IEC 17025', 'ABNT NBR ISO 9001'],
'min_confidence': 0.78,
'temperature': 0.3
}
return {**default_config, **(config or {})}
def _init_logger(self):
self.logger = logging.getLogger('MetrologyRAG')
self.logger.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
file_handler = logging.FileHandler('metrology_audit.log')
file_handler.setFormatter(formatter)
stream_handler = logging.StreamHandler()
stream_handler.setFormatter(formatter)
self.logger.addHandler(file_handler)
self.logger.addHandler(stream_handler)
def initialize_system(self, pdf_folder: str):
try:
self._validate_data_source(pdf_folder)
start_time = time.time()
self._load_documents(pdf_folder)
self._create_vector_index()
self.logger.info(f"Sistema inicializado em {time.time()-start_time:.2f}s | Documentos: {len(self.documents)}")
except Exception as e:
self.logger.critical(f"Falha na inicialização: {str(e)}")
sys.exit(1)
def _validate_data_source(self, folder_path: str):
if not os.path.exists(folder_path):
raise FileNotFoundError(f"Diretório inexistente: {folder_path}")
valid_files = [f for f in os.listdir(folder_path)
if os.path.splitext(f)[1].lower() in self.config['allowed_file_types']]
if not valid_files:
raise ValueError("Nenhum documento PDF válido encontrado")
def _load_documents(self, folder_path: str):
try:
loader = PyPDFDirectoryLoader(folder_path)
pages = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=self.config['chunk_size'],
chunk_overlap=self.config['chunk_overlap'],
separators=["\n\n• ", "\n■ ", "(?<=\. )", "; ", "► ", "\\|"]
)
clean_docs = []
for i, page in enumerate(pages):
try:
text = self._preprocess_technical_text(page.page_content)
clean_docs.extend(text_splitter.split_text(text))
except Exception as e:
self.logger.error(f"Erro no documento {i+1}: {str(e)}")
continue
self.documents = clean_docs
self.logger.info(f"Documentos técnicos carregados: {len(self.documents)} segmentos")
except Exception as e:
self.logger.error(f"Falha no carregamento: {str(e)}")
raise
def _preprocess_technical_text(self, text: str) -> str:
replacements = [
(r'\b(um)\b', 'µm'),
(r'(?i)graus?\s*C', '°C'),
(r'(\d)([A-Za-z°µ])', r'\1 \2'),
(r'±\s*(\d)', r'±\1'),
(r'kN/m²', 'kPa'),
(r'(\d+)\s*-\s*(\d+)', r'\1 a \2'),
(r'\s+', ' '),
(r'\[.*?\]', '')
]
for pattern, replacement in replacements:
text = re.sub(pattern, replacement, text)
return text.strip()
def _create_vector_index(self):
try:
dense_vectors = self.embedder.encode(self.documents)
self.faiss_index = faiss.IndexHNSWFlat(dense_vectors.shape[1], 32)
self.faiss_index.add(dense_vectors.astype('float32'))
tokenized_docs = [self._technical_tokenizer(doc) for doc in self.documents]
self.bm25 = BM25Okapi(tokenized_docs)
self.logger.info("Índices vetoriais criados com sucesso")
except Exception as e:
self.logger.error(f"Erro na criação de índices: {str(e)}")
raise
def _technical_tokenizer(self, text: str) -> List[str]:
tokens = re.findall(
r'\b[\wµ°±]+(?:[/-]\d+)?\b|'
r'\d+\.\d+[eE]?[+-]?\d*|'
r'[A-Z]{2,}(?:\s+\d+[A-Z]*)?|'
r'[;:±≤≥]',
text
)
return [t.lower() for t in tokens if t]
def retrieve_context(self, query: str) -> List[str]:
try:
boosted_query = self._boost_query(query)
query_embedding = self.embedder.encode([boosted_query])
_, dense_ids = self.faiss_index.search(query_embedding.astype('float32'), 50)
tokenized_query = self._technical_tokenizer(boosted_query)
bm25_scores = self.bm25.get_scores(tokenized_query)
bm25_ids = np.argsort(bm25_scores)[::-1][:50]
combined_scores = self._reciprocal_rank_fusion(dense_ids[0], bm25_ids)
return [self.documents[i] for i in combined_scores[:self.config['top_k']]]
except Exception as e:
self.logger.error(f"Falha na recuperação: {str(e)}")
return []
def _boost_query(self, query: str) -> str:
terms = [
'incerteza de medição',
'calibração rastreável',
'certificado de calibração',
'padrão de referência',
'ISO/IEC 17025'
]
return f"{query} {' '.join(terms)}"
def _reciprocal_rank_fusion(self, dense_ids: List[int], bm25_ids: List[int]) -> List[int]:
combined_scores = {}
for i, idx in enumerate(dense_ids):
combined_scores[idx] = combined_scores.get(idx, 0) + 1/(i + 60)
for i, idx in enumerate(bm25_ids):
combined_scores[idx] = combined_scores.get(idx, 0) + 1/(i + 60)
sorted_scores = sorted(combined_scores.items(), key=lambda x: x[1], reverse=True)
valid_ids = [idx for idx, _ in sorted_scores if idx < len(self.documents)]
return valid_ids
def generate_technical_response(self, query: str) -> str:
try:
context = self.retrieve_context(query)
if not context:
raise ValueError("Contexto insuficiente")
prompt = self._build_structured_prompt(query, context)
if not self._validate_prompt(prompt):
raise ValueError("Prompt inválido")
response = self._call_llm_with_retry(prompt)
return self._postprocess_response(response, context)
except Exception as e:
self.logger.error(f"Falha na geração: {str(e)}")
return self._fallback_procedure(query)
def _build_structured_prompt(self, query: str, context: List[str]) -> str:
detected_norms = self._detect_norms(context)
detected_equipment = self._detect_equipment(context)
context_entries = []
for i, text in enumerate(context[:3]):
cleaned_text = text[:250].replace('\n', ' ')
context_entries.append(f'[Doc {i+1}] {cleaned_text}...')
context_str = '\n'.join(context_entries)
template = (
f"## Diretrizes Técnicas ISO/IEC 17025:2017 ##\n"
f"1. Formato obrigatório:\n"
f" - Seção 1: Fundamentação Normativa ({', '.join(detected_norms)})\n"
f" - Seção 2: Procedimento de Medição\n"
f" - Seção 3: Análise de Incertezas (k=2)\n"
f" - Seção 4: Condições Ambientais\n\n"
f"2. Dados obrigatórios:\n"
f" - Tolerâncias: ± valores com unidades\n"
f" - Equipamentos: {', '.join(detected_equipment)}\n"
f" - Normas: {', '.join(detected_norms)}\n\n"
f"## Contexto Técnico ##\n"
f"{context_str}\n\n"
f"## Consulta ##\n"
f"{query}\n\n"
f"## Resposta Estruturada ##"
)
return template
def _detect_norms(self, context: List[str]) -> List[str]:
norms = set()
pattern = r'\b(ISO/IEC|ABNT NBR|OIML R)\s+[\d\.]+'
for text in context:
norms.update(re.findall(pattern, text))
return list(norms)[:3] or self.config['required_norms']
def _detect_equipment(self, context: List[str]) -> List[str]:
equipment = set()
pattern = r'\b([A-Z][a-z]*\s+)?(\d+[A-Z]+\b|Micrômetro|Paquímetro|Manômetro|Multímetro)'
for text in context:
matches = re.findall(pattern, text)
equipment.update([f"{m[0]}{m[1]}" for m in matches])
return list(equipment)[:5]
def _validate_prompt(self, prompt: str) -> bool:
checks = [
(r'ISO/IEC 17025', 2),
(r'\d+ ± \d+', 1),
(r'k=\d', 1),
(r'°C', 1)
]
score = sum(weight for pattern, weight in checks if re.search(pattern, prompt))
return score >= 3
def _call_llm_with_retry(self, prompt: str) -> str:
for attempt in range(self.config['max_retries']):
try:
result = self.client.predict(
inputs=prompt,
top_p=0.9,
temperature=self.config['temperature'],
chat_counter=0,
chatbot=[],
api_name="/predict"
)
return self._clean_api_response(result)
except Exception as e:
self.logger.warning(f"Tentativa {attempt+1} falhou: {str(e)}")
time.sleep(2**attempt)
raise TimeoutError("Falha após múltiplas tentativas")
def _clean_api_response(self, response) -> str:
if isinstance(response, (list, tuple)):
return ' '.join(str(item) for item in response if item)
return str(response).replace('**', '').replace('```', '').strip()
def _postprocess_response(self, response: str, context: List[str]) -> str:
processed = response.replace('Resposta Estruturada', '').strip()
processed = self._enhance_technical_terms(processed)
processed = self._add_references(processed, context)
return self._format_response(processed)
def _enhance_technical_terms(self, text: str) -> str:
replacements = {
r'\b(incerteza)\b': r'incerteza de medição',
r'\b(calibração)\b': r'calibração rastreável',
r'\b(norma)\b': r'norma técnica',
r'(\d)([a-zA-Zµ°])': r'\1 \2'
}
for pattern, repl in replacements.items():
text = re.sub(pattern, repl, text, flags=re.IGNORECASE)
return text
def _add_references(self, text: str, context: List[str]) -> str:
refs = set()
for doc in context[:3]:
match = re.search(r'\[Doc \d+\] (.{30})', doc)
if match:
refs.add(f"- {match.group(1)}...")
return f"{text}\n\n## Referências Técnicas ##\n" + "\n".join(list(refs)[:3])
def _format_response(self, text: str) -> str:
border = "="*80
header = f"{Fore.GREEN}▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓\n RESPOSTA TÉCNICA CERTIFICADA\n▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓{Style.RESET_ALL}"
formatted = re.sub(r'^(\d+\.)\s+(.+)$',
f'{Fore.CYAN}\\1 {Style.RESET_ALL}\\2',
text, flags=re.M)
formatted = re.sub(r'(± \d+\.?\d*)',
f'{Fore.YELLOW}\\1{Style.RESET_ALL}',
formatted)
return f"\n{border}\n{header}\n{border}\n{formatted}\n{border}"
def _fallback_procedure(self, query: str) -> str:
try:
key_terms = re.findall(r'\b[A-Z]{3,}\b|\b\d+[A-Z]+\b', query)
relevant = [doc for doc in self.documents if any(term in doc for term in key_terms)][:3]
return (
f"{Fore.YELLOW}INFORMAÇÃO TÉCNICA PARCIAL:{Style.RESET_ALL}\n" +
"\n".join([f"• {doc[:300]}..." for doc in relevant]) +
f"\n\n{Fore.RED}AVISO: Resposta não validada - consulte documentos originais{Style.RESET_ALL}"
)
except:
return f"{Fore.RED}Erro crítico - sistema necessita re-inicialização{Style.RESET_ALL}"
def generate_report(self, query: str, response: str, filename: str = "relatorio_tecnico.md"):
try:
timestamp = datetime.now().strftime("%d/%m/%Y %H:%M:%S")
report = (
f"# RELATÓRIO TÉCNICO - METROLOGIA\n\n"
f"**Data:** {timestamp}\n"
f"**Consulta:** {query}\n\n"
"## Resposta Técnica\n"
f"{response}\n\n"
"**Assinatura Digital:** [Sistema Certificado v2.1]"
)
with open(filename, 'w', encoding='utf-8') as f:
f.write(report)
self.logger.info(f"Relatório gerado: {filename}")
except Exception as e:
self.logger.error(f"Falha ao gerar relatório: {str(e)}")
def analyze_metrology_report(self, pdf_path: str) -> str:
try:
text = self._extract_pdf_text(pdf_path)
compliance = self._check_compliance(text)
analysis = self._generate_analysis_report(text, compliance)
return self._format_compliance_report(analysis, compliance)
except Exception as e:
self.logger.error(f"Falha na análise: {str(e)}")
return self._fallback_procedure("Análise de relatório")
def _extract_pdf_text(self, path: str) -> str:
reader = PdfReader(path)
return '\n'.join([page.extract_text() for page in reader.pages if page.extract_text()])
def _check_compliance(self, text: str) -> Dict:
checks = {
'rastreabilidade': {'patterns': [r'rastreab[i|í]lidade.*INMETRO'], 'required': True},
'incerteza': {'patterns': [r'incerteza expandida.*≤?\s*\d+'], 'required': True},
'ambiente': {'patterns': [r'temperatura.*23\s*±\s*2\s*°C'], 'required': False},
'normas': {'patterns': [r'ISO/IEC\s+17025'], 'required': True}
}
results = {}
for key, config in checks.items():
found = any(re.search(p, text) for p in config['patterns'])
results[key] = {
'status': 'OK' if found else 'FALHA' if config['required'] else 'N/A',
'critical': config['required'] and not found
}
return results
def _generate_analysis_report(self, text: str, compliance: Dict) -> str:
critical = sum(1 for v in compliance.values() if v['critical'])
status = "NÃO CONFORME" if critical else "CONFORME"
prompt = f"""## Análise de Conformidade Metrológica ##
Documento analisado: {text[:2000]}...
Resultados:
{json.dumps(compliance, indent=2)}
## Parecer Técnico ##
Emitir parecer considerando:
- Status: {status}
- Itens críticos: {critical}
- Recomendações de adequação"""
return self._call_llm_with_retry(prompt)
def _format_compliance_report(self, text: str, compliance: Dict) -> str:
status = "APROVADO" if not any(v['critical'] for v in compliance.values()) else "REPROVADO"
color = Fore.GREEN if status == "APROVADO" else Fore.RED
header = f"""
{color}▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓
PARECER TÉCNICO - STATUS: {status}
▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓{Style.RESET_ALL}
"""
summary = "## Resumo de Conformidade ##\n"
for k, v in compliance.items():
summary += f"• {k.upper()}: {v['status']}\n"
return header + summary + "\n" + text
def main_menu():
print(Fore.BLUE + "\n🔧 Sistema de Metrologia Inteligente v2.1" + Style.RESET_ALL)
print(Fore.CYAN + "Menu Principal:" + Style.RESET_ALL)
print("1. Inicializar sistema com documentos PDF")
print("2. Consulta técnica")
print("3. Analisar relatório PDF")
print("4. Gerar relatório completo")
print("5. Sair")
return input(Fore.YELLOW + "> Selecione uma opção: " + Style.RESET_ALL) |