File size: 17,904 Bytes
7453f77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
from gradio_client import Client
from langchain_community.document_loaders import PyPDFDirectoryLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from sentence_transformers import SentenceTransformer
from rank_bm25 import BM25Okapi
import faiss
import re
import os
import sys
import time
import json
import numpy as np
import logging
from typing import List, Dict, Tuple, Optional
from PyPDF2 import PdfReader
from colorama import Fore, Style
from datetime import datetime
from sklearn.metrics.pairwise import cosine_similarity

class MetrologyRAGSystem:
    def __init__(self, config: Optional[Dict] = None):
        self.config = self._load_default_config(config)
        self.embedder = SentenceTransformer(self.config['embedding_model'])
        self.client = Client(self.config['api_endpoint'])
        self.documents = []
        self.faiss_index = None
        self.bm25 = None
        self._init_logger()

    def _load_default_config(self, config: Dict) -> Dict:
        default_config = {
            'embedding_model': 'all-MiniLM-L6-v2',
            'chunk_size': 1600,
            'chunk_overlap': 450,
            'top_k': 7,
            'max_retries': 5,
            'hybrid_ratio': 0.6,
            'allowed_file_types': ['.pdf'],
            'api_endpoint': "yuntian-deng/ChatGPT",
            'required_norms': ['ISO/IEC 17025', 'ABNT NBR ISO 9001'],
            'min_confidence': 0.78,
            'temperature': 0.3
        }
        return {**default_config, **(config or {})}

    def _init_logger(self):
        self.logger = logging.getLogger('MetrologyRAG')
        self.logger.setLevel(logging.INFO)
        formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
        
        file_handler = logging.FileHandler('metrology_audit.log')
        file_handler.setFormatter(formatter)
        
        stream_handler = logging.StreamHandler()
        stream_handler.setFormatter(formatter)
        
        self.logger.addHandler(file_handler)
        self.logger.addHandler(stream_handler)

    def initialize_system(self, pdf_folder: str):
        try:
            self._validate_data_source(pdf_folder)
            start_time = time.time()
            self._load_documents(pdf_folder)
            self._create_vector_index()
            self.logger.info(f"Sistema inicializado em {time.time()-start_time:.2f}s | Documentos: {len(self.documents)}")
        except Exception as e:
            self.logger.critical(f"Falha na inicialização: {str(e)}")
            sys.exit(1)

    def _validate_data_source(self, folder_path: str):
        if not os.path.exists(folder_path):
            raise FileNotFoundError(f"Diretório inexistente: {folder_path}")
            
        valid_files = [f for f in os.listdir(folder_path) 
                      if os.path.splitext(f)[1].lower() in self.config['allowed_file_types']]
        
        if not valid_files:
            raise ValueError("Nenhum documento PDF válido encontrado")

    def _load_documents(self, folder_path: str):
        try:
            loader = PyPDFDirectoryLoader(folder_path)
            pages = loader.load()
            
            text_splitter = RecursiveCharacterTextSplitter(
                chunk_size=self.config['chunk_size'],
                chunk_overlap=self.config['chunk_overlap'],
                separators=["\n\n• ", "\n■ ", "(?<=\. )", "; ", "► ", "\\|"]
            )
            
            clean_docs = []
            for i, page in enumerate(pages):
                try:
                    text = self._preprocess_technical_text(page.page_content)
                    clean_docs.extend(text_splitter.split_text(text))
                except Exception as e:
                    self.logger.error(f"Erro no documento {i+1}: {str(e)}")
                    continue
            
            self.documents = clean_docs
            self.logger.info(f"Documentos técnicos carregados: {len(self.documents)} segmentos")

        except Exception as e:
            self.logger.error(f"Falha no carregamento: {str(e)}")
            raise

    def _preprocess_technical_text(self, text: str) -> str:
        replacements = [
            (r'\b(um)\b', 'µm'),
            (r'(?i)graus?\s*C', '°C'),
            (r'(\d)([A-Za-z°µ])', r'\1 \2'),
            (r'±\s*(\d)', r'±\1'),
            (r'kN/m²', 'kPa'),
            (r'(\d+)\s*-\s*(\d+)', r'\1 a \2'),
            (r'\s+', ' '),
            (r'\[.*?\]', '')
        ]
        
        for pattern, replacement in replacements:
            text = re.sub(pattern, replacement, text)
            
        return text.strip()

    def _create_vector_index(self):
        try:
            dense_vectors = self.embedder.encode(self.documents)
            self.faiss_index = faiss.IndexHNSWFlat(dense_vectors.shape[1], 32)
            self.faiss_index.add(dense_vectors.astype('float32'))
            
            tokenized_docs = [self._technical_tokenizer(doc) for doc in self.documents]
            self.bm25 = BM25Okapi(tokenized_docs)
            
            self.logger.info("Índices vetoriais criados com sucesso")
            
        except Exception as e:
            self.logger.error(f"Erro na criação de índices: {str(e)}")
            raise

    def _technical_tokenizer(self, text: str) -> List[str]:
        tokens = re.findall(
            r'\b[\wµ°±]+(?:[/-]\d+)?\b|'
            r'\d+\.\d+[eE]?[+-]?\d*|'
            r'[A-Z]{2,}(?:\s+\d+[A-Z]*)?|'
            r'[;:±≤≥]',
            text
        )
        return [t.lower() for t in tokens if t]

    def retrieve_context(self, query: str) -> List[str]:
        try:
            boosted_query = self._boost_query(query)
            
            query_embedding = self.embedder.encode([boosted_query])
            _, dense_ids = self.faiss_index.search(query_embedding.astype('float32'), 50)
            
            tokenized_query = self._technical_tokenizer(boosted_query)
            bm25_scores = self.bm25.get_scores(tokenized_query)
            bm25_ids = np.argsort(bm25_scores)[::-1][:50]
            
            combined_scores = self._reciprocal_rank_fusion(dense_ids[0], bm25_ids)
            
            return [self.documents[i] for i in combined_scores[:self.config['top_k']]]
            
        except Exception as e:
            self.logger.error(f"Falha na recuperação: {str(e)}")
            return []

    def _boost_query(self, query: str) -> str:
        terms = [
            'incerteza de medição', 
            'calibração rastreável',
            'certificado de calibração',
            'padrão de referência',
            'ISO/IEC 17025'
        ]
        return f"{query} {' '.join(terms)}"

    def _reciprocal_rank_fusion(self, dense_ids: List[int], bm25_ids: List[int]) -> List[int]:
        combined_scores = {}
        for i, idx in enumerate(dense_ids):
            combined_scores[idx] = combined_scores.get(idx, 0) + 1/(i + 60)
            
        for i, idx in enumerate(bm25_ids):
            combined_scores[idx] = combined_scores.get(idx, 0) + 1/(i + 60)
            
        sorted_scores = sorted(combined_scores.items(), key=lambda x: x[1], reverse=True)
        valid_ids = [idx for idx, _ in sorted_scores if idx < len(self.documents)]
        return valid_ids

    def generate_technical_response(self, query: str) -> str:
        try:
            context = self.retrieve_context(query)
            if not context:
                raise ValueError("Contexto insuficiente")
                
            prompt = self._build_structured_prompt(query, context)
            
            if not self._validate_prompt(prompt):
                raise ValueError("Prompt inválido")
            
            response = self._call_llm_with_retry(prompt)
            return self._postprocess_response(response, context)
            
        except Exception as e:
            self.logger.error(f"Falha na geração: {str(e)}")
            return self._fallback_procedure(query)

    def _build_structured_prompt(self, query: str, context: List[str]) -> str:
        detected_norms = self._detect_norms(context)
        detected_equipment = self._detect_equipment(context)
        
        context_entries = []
        for i, text in enumerate(context[:3]):
            cleaned_text = text[:250].replace('\n', '  ')
            context_entries.append(f'[Doc {i+1}] {cleaned_text}...')
        
        context_str = '\n'.join(context_entries)
        
        template = (
            f"## Diretrizes Técnicas ISO/IEC 17025:2017 ##\n"
            f"1. Formato obrigatório:\n"
            f"   - Seção 1: Fundamentação Normativa ({', '.join(detected_norms)})\n"
            f"   - Seção 2: Procedimento de Medição\n"
            f"   - Seção 3: Análise de Incertezas (k=2)\n"
            f"   - Seção 4: Condições Ambientais\n\n"
            f"2. Dados obrigatórios:\n"
            f"   - Tolerâncias: ± valores com unidades\n"
            f"   - Equipamentos: {', '.join(detected_equipment)}\n"
            f"   - Normas: {', '.join(detected_norms)}\n\n"
            f"## Contexto Técnico ##\n"
            f"{context_str}\n\n"
            f"## Consulta ##\n"
            f"{query}\n\n"
            f"## Resposta Estruturada ##"
        )
        return template

    def _detect_norms(self, context: List[str]) -> List[str]:
        norms = set()
        pattern = r'\b(ISO/IEC|ABNT NBR|OIML R)\s+[\d\.]+'
        for text in context:
            norms.update(re.findall(pattern, text))
        return list(norms)[:3] or self.config['required_norms']

    def _detect_equipment(self, context: List[str]) -> List[str]:
        equipment = set()
        pattern = r'\b([A-Z][a-z]*\s+)?(\d+[A-Z]+\b|Micrômetro|Paquímetro|Manômetro|Multímetro)'
        for text in context:
            matches = re.findall(pattern, text)
            equipment.update([f"{m[0]}{m[1]}" for m in matches])
        return list(equipment)[:5]

    def _validate_prompt(self, prompt: str) -> bool:
        checks = [
            (r'ISO/IEC 17025', 2),
            (r'\d+ ± \d+', 1),
            (r'k=\d', 1),
            (r'°C', 1)
        ]
        score = sum(weight for pattern, weight in checks if re.search(pattern, prompt))
        return score >= 3

    def _call_llm_with_retry(self, prompt: str) -> str:
        for attempt in range(self.config['max_retries']):
            try:
                result = self.client.predict(
                    inputs=prompt,
                    top_p=0.9,
                    temperature=self.config['temperature'],
                    chat_counter=0,
                    chatbot=[],
                    api_name="/predict"
                )
                return self._clean_api_response(result)
            except Exception as e:
                self.logger.warning(f"Tentativa {attempt+1} falhou: {str(e)}")
                time.sleep(2**attempt)
        raise TimeoutError("Falha após múltiplas tentativas")

    def _clean_api_response(self, response) -> str:
        if isinstance(response, (list, tuple)):
            return ' '.join(str(item) for item in response if item)
        return str(response).replace('**', '').replace('```', '').strip()

    def _postprocess_response(self, response: str, context: List[str]) -> str:
        processed = response.replace('Resposta Estruturada', '').strip()
        processed = self._enhance_technical_terms(processed)
        processed = self._add_references(processed, context)
        return self._format_response(processed)

    def _enhance_technical_terms(self, text: str) -> str:
        replacements = {
            r'\b(incerteza)\b': r'incerteza de medição',
            r'\b(calibração)\b': r'calibração rastreável',
            r'\b(norma)\b': r'norma técnica',
            r'(\d)([a-zA-Zµ°])': r'\1 \2'
        }
        for pattern, repl in replacements.items():
            text = re.sub(pattern, repl, text, flags=re.IGNORECASE)
        return text

    def _add_references(self, text: str, context: List[str]) -> str:
        refs = set()
        for doc in context[:3]:
            match = re.search(r'\[Doc \d+\] (.{30})', doc)
            if match:
                refs.add(f"- {match.group(1)}...")
        return f"{text}\n\n## Referências Técnicas ##\n" + "\n".join(list(refs)[:3])

    def _format_response(self, text: str) -> str:
        border = "="*80
        header = f"{Fore.GREEN}▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓\n RESPOSTA TÉCNICA CERTIFICADA\n▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓{Style.RESET_ALL}"
        
        formatted = re.sub(r'^(\d+\.)\s+(.+)$', 
                         f'{Fore.CYAN}\\1 {Style.RESET_ALL}\\2', 
                         text, flags=re.M)
        
        formatted = re.sub(r'(± \d+\.?\d*)', 
                         f'{Fore.YELLOW}\\1{Style.RESET_ALL}', 
                         formatted)
        
        return f"\n{border}\n{header}\n{border}\n{formatted}\n{border}"

    def _fallback_procedure(self, query: str) -> str:
        try:
            key_terms = re.findall(r'\b[A-Z]{3,}\b|\b\d+[A-Z]+\b', query)
            relevant = [doc for doc in self.documents if any(term in doc for term in key_terms)][:3]
            
            return (
                f"{Fore.YELLOW}INFORMAÇÃO TÉCNICA PARCIAL:{Style.RESET_ALL}\n" +
                "\n".join([f"• {doc[:300]}..." for doc in relevant]) +
                f"\n\n{Fore.RED}AVISO: Resposta não validada - consulte documentos originais{Style.RESET_ALL}"
            )
        except:
            return f"{Fore.RED}Erro crítico - sistema necessita re-inicialização{Style.RESET_ALL}"

    def generate_report(self, query: str, response: str, filename: str = "relatorio_tecnico.md"):
        try:
            timestamp = datetime.now().strftime("%d/%m/%Y %H:%M:%S")
            report = (
                f"# RELATÓRIO TÉCNICO - METROLOGIA\n\n"
                f"**Data:** {timestamp}\n"
                f"**Consulta:** {query}\n\n"
                "## Resposta Técnica\n"
                f"{response}\n\n"
                "**Assinatura Digital:** [Sistema Certificado v2.1]"
            )
            
            with open(filename, 'w', encoding='utf-8') as f:
                f.write(report)
                
            self.logger.info(f"Relatório gerado: {filename}")
        except Exception as e:
            self.logger.error(f"Falha ao gerar relatório: {str(e)}")

    def analyze_metrology_report(self, pdf_path: str) -> str:
        try:
            text = self._extract_pdf_text(pdf_path)
            compliance = self._check_compliance(text)
            analysis = self._generate_analysis_report(text, compliance)
            return self._format_compliance_report(analysis, compliance)
        except Exception as e:
            self.logger.error(f"Falha na análise: {str(e)}")
            return self._fallback_procedure("Análise de relatório")

    def _extract_pdf_text(self, path: str) -> str:
        reader = PdfReader(path)
        return '\n'.join([page.extract_text() for page in reader.pages if page.extract_text()])

    def _check_compliance(self, text: str) -> Dict:
        checks = {
            'rastreabilidade': {'patterns': [r'rastreab[i|í]lidade.*INMETRO'], 'required': True},
            'incerteza': {'patterns': [r'incerteza expandida.*≤?\s*\d+'], 'required': True},
            'ambiente': {'patterns': [r'temperatura.*23\s*±\s*2\s*°C'], 'required': False},
            'normas': {'patterns': [r'ISO/IEC\s+17025'], 'required': True}
        }
        
        results = {}
        for key, config in checks.items():
            found = any(re.search(p, text) for p in config['patterns'])
            results[key] = {
                'status': 'OK' if found else 'FALHA' if config['required'] else 'N/A',
                'critical': config['required'] and not found
            }
        return results

    def _generate_analysis_report(self, text: str, compliance: Dict) -> str:
        critical = sum(1 for v in compliance.values() if v['critical'])
        status = "NÃO CONFORME" if critical else "CONFORME"
        
        prompt = f"""## Análise de Conformidade Metrológica ##
Documento analisado: {text[:2000]}...

Resultados:
{json.dumps(compliance, indent=2)}

## Parecer Técnico ##
Emitir parecer considerando:
- Status: {status}
- Itens críticos: {critical}
- Recomendações de adequação"""
        
        return self._call_llm_with_retry(prompt)

    def _format_compliance_report(self, text: str, compliance: Dict) -> str:
        status = "APROVADO" if not any(v['critical'] for v in compliance.values()) else "REPROVADO"
        color = Fore.GREEN if status == "APROVADO" else Fore.RED
        
        header = f"""
{color}▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓
 PARECER TÉCNICO - STATUS: {status}
▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓{Style.RESET_ALL}

"""
        summary = "## Resumo de Conformidade ##\n"
        for k, v in compliance.items():
            summary += f"• {k.upper()}: {v['status']}\n"
        
        return header + summary + "\n" + text

def main_menu():
    print(Fore.BLUE + "\n🔧 Sistema de Metrologia Inteligente v2.1" + Style.RESET_ALL)
    print(Fore.CYAN + "Menu Principal:" + Style.RESET_ALL)
    print("1. Inicializar sistema com documentos PDF")
    print("2. Consulta técnica")
    print("3. Analisar relatório PDF")
    print("4. Gerar relatório completo")
    print("5. Sair")
    return input(Fore.YELLOW + "> Selecione uma opção: " + Style.RESET_ALL)