Spaces:
Running
Running
File size: 10,275 Bytes
6852d71 6f1dbe9 7f29224 9224061 4fa0927 31fe207 e49e7e7 4fa0927 5c408af e49e7e7 6852d71 6f1dbe9 6852d71 4fa0927 6f1dbe9 b576e4e 4fa0927 e49e7e7 5c408af e49e7e7 6f1dbe9 e49e7e7 6852d71 e49e7e7 5c408af e49e7e7 5c408af e49e7e7 5c408af 6852d71 e49e7e7 6852d71 9224061 6f1dbe9 5c408af 9224061 6f1dbe9 9224061 e49e7e7 5c408af e49e7e7 9224061 e49e7e7 6f1dbe9 e49e7e7 6f1dbe9 6852d71 6f1dbe9 e49e7e7 6f1dbe9 9224061 6f1dbe9 9224061 6f1dbe9 e49e7e7 6f1dbe9 e49e7e7 6f1dbe9 e49e7e7 6f1dbe9 5c408af 9224061 5c408af 9224061 6f1dbe9 e49e7e7 6f1dbe9 4fa0927 e49e7e7 6852d71 6f1dbe9 e49e7e7 6f1dbe9 e49e7e7 6f1dbe9 6852d71 6f1dbe9 e49e7e7 6f1dbe9 6852d71 6f1dbe9 6852d71 a31ad5a e49e7e7 7f29224 6852d71 e49e7e7 a31ad5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import os
from typing import Optional, Tuple
import gradio as gr
from langchain_community.document_loaders import PyPDFLoader, DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.llms import HuggingFacePipeline
from langchain.chains import RetrievalQA
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
import torch
import tempfile
import time
# Configurações
EMBEDDING_MODEL = "sentence-transformers/all-mpnet-base-v2"
LLM_MODEL = "google/flan-t5-large"
DOCS_DIR = "documents"
class RAGSystem:
def __init__(self):
self.tokenizer = AutoTokenizer.from_pretrained(LLM_MODEL)
self.model = AutoModelForSeq2SeqLM.from_pretrained(
LLM_MODEL,
device_map="auto",
torch_dtype=torch.float32
)
pipe = pipeline(
"text2text-generation",
model=self.model,
tokenizer=self.tokenizer,
max_length=512,
temperature=0.7,
top_p=0.95
)
self.llm = HuggingFacePipeline(pipeline=pipe)
self.embeddings = HuggingFaceEmbeddings(
model_name=EMBEDDING_MODEL,
model_kwargs={'device': 'cpu'}
)
self.base_db = self.load_base_knowledge()
def load_base_knowledge(self) -> Optional[FAISS]:
try:
if not os.path.exists(DOCS_DIR):
os.makedirs(DOCS_DIR)
return None
loader = DirectoryLoader(
DOCS_DIR,
glob="**/*.pdf",
loader_cls=PyPDFLoader
)
documents = loader.load()
if not documents:
return None
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500,
chunk_overlap=100,
length_function=len,
separators=["\n\n", "\n", ".", " ", ""]
)
texts = text_splitter.split_documents(documents)
return FAISS.from_documents(texts, self.embeddings)
except Exception as e:
print(f"Erro ao carregar base de conhecimento: {str(e)}")
return None
def process_pdf(self, file_content: bytes) -> Optional[FAISS]:
try:
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp_file:
tmp_file.write(file_content)
tmp_path = tmp_file.name
loader = PyPDFLoader(tmp_path)
documents = loader.load()
os.unlink(tmp_path)
if not documents:
return None
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500,
chunk_overlap=100,
length_function=len,
separators=["\n\n", "\n", ".", " ", ""]
)
texts = text_splitter.split_documents(documents)
db = FAISS.from_documents(texts, self.embeddings)
if self.base_db is not None:
db.merge_from(self.base_db)
return db
except Exception as e:
print(f"Erro ao processar PDF: {str(e)}")
return None
def generate_response(self, file_obj, query: str, progress=gr.Progress()) -> Tuple[str, str, str]:
"""Retorna (resposta, status, tempo_decorrido)"""
if not query.strip():
return "Por favor, insira uma pergunta.", "⚠️ Aguardando pergunta", "0s"
start_time = time.time()
try:
progress(0, desc="Iniciando processamento...")
# Processa documento
progress(0.2, desc="Processando documento...")
if file_obj is not None:
db = self.process_pdf(file_obj)
if db is None:
return "Não foi possível processar o PDF.", "❌ Erro no processamento", "0s"
elif self.base_db is not None:
db = self.base_db
else:
return "Nenhuma base de conhecimento disponível.", "❌ Sem documentos", "0s"
progress(0.4, desc="Buscando informações relevantes...")
qa_chain = RetrievalQA.from_chain_type(
llm=self.llm,
chain_type="stuff",
retriever=db.as_retriever(
search_kwargs={"k": 4, "fetch_k": 6}
),
return_source_documents=True
)
progress(0.6, desc="Gerando resposta...")
prompt = f"""Baseado nos documentos fornecidos, responda em português à seguinte pergunta:
{query}
Se a resposta vier da base de documentos permanente, indique isso no início.
Se a resposta vier do PDF enviado, indique isso no início.
Se não encontrar informações suficientes, indique isso claramente."""
result = qa_chain({"query": prompt})
elapsed_time = f"{time.time() - start_time:.1f}s"
progress(1.0, desc="Concluído!")
return result["result"], "✅ Sucesso", elapsed_time
except Exception as e:
elapsed_time = f"{time.time() - start_time:.1f}s"
return f"Erro ao gerar resposta: {str(e)}", "❌ Erro", elapsed_time
def create_demo():
rag = RAGSystem()
with gr.Blocks(theme=gr.themes.Soft()) as demo:
with gr.Column(elem_id="container"):
# Cabeçalho
gr.Markdown(
"""
# 🤖 Assistente de Documentos Inteligente
Este sistema usa tecnologia RAG (Retrieval-Augmented Generation) para responder perguntas sobre seus documentos.
"""
)
# Área principal
with gr.Row():
# Coluna de entrada
with gr.Column():
with gr.Group():
gr.Markdown("### 📄 Documentos")
file_input = gr.File(
label="Upload de PDF (opcional)",
type="binary",
file_types=[".pdf"],
height=100,
)
info = gr.Markdown(
f"""
ℹ️ Além do upload, o sistema também consulta a pasta `{DOCS_DIR}`
"""
)
with gr.Group():
gr.Markdown("### ❓ Sua Pergunta")
query_input = gr.Textbox(
placeholder="Digite sua pergunta aqui...",
lines=3,
max_lines=6,
show_label=False,
)
with gr.Row():
clear_btn = gr.Button("🗑️ Limpar", variant="secondary")
submit_btn = gr.Button("🔍 Enviar Pergunta", variant="primary")
# Coluna de saída
with gr.Column():
with gr.Group():
gr.Markdown("### 📝 Resposta")
with gr.Row():
status_output = gr.Textbox(
label="Status",
value="⏳ Aguardando...",
interactive=False,
show_label=False,
)
time_output = gr.Textbox(
label="Tempo",
value="0s",
interactive=False,
show_label=False,
)
response_output = gr.Textbox(
label="Resposta",
placeholder="A resposta aparecerá aqui...",
interactive=False,
lines=12,
show_label=False,
)
# Exemplos
with gr.Accordion("📚 Exemplos de Perguntas", open=False):
gr.Examples(
examples=[
[None, "Qual é o tema principal dos documentos?"],
[None, "Pode resumir os pontos principais?"],
[None, "Quais são as principais conclusões?"],
[None, "Explique o contexto deste documento."],
],
inputs=[file_input, query_input],
)
# Rodapé
gr.Markdown(
"""
---
### 🔧 Sobre o Sistema
* Usa modelo T5 para geração de respostas
* Processamento de documentos com tecnologia RAG
* Suporte a múltiplos documentos PDF
* Respostas baseadas apenas no conteúdo dos documentos
"""
)
# Eventos
submit_btn.click(
fn=rag.generate_response,
inputs=[file_input, query_input],
outputs=[response_output, status_output, time_output],
)
clear_btn.click(
lambda: (None, "", "⏳ Aguardando...", "0s"),
outputs=[file_input, query_input, status_output, time_output],
)
# Limpa a resposta quando a pergunta muda
query_input.change(
lambda: ("", "⏳ Aguardando...", "0s"),
outputs=[response_output, status_output, time_output],
)
return demo
if __name__ == "__main__":
demo = create_demo()
demo.launch() |