Spaces:
Running
Running
File size: 5,572 Bytes
6852d71 e49e7e7 7f29224 31fe207 4fa0927 31fe207 e49e7e7 4fa0927 e49e7e7 6852d71 4fa0927 e49e7e7 4fa0927 e49e7e7 6852d71 e49e7e7 6852d71 e49e7e7 6852d71 e49e7e7 6852d71 e49e7e7 6852d71 e49e7e7 4fa0927 e49e7e7 6852d71 e49e7e7 6852d71 e49e7e7 6852d71 e49e7e7 6852d71 e49e7e7 6852d71 a31ad5a e49e7e7 7f29224 6852d71 e49e7e7 a31ad5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
import os
from typing import Optional
import gradio as gr
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.llms import HuggingFacePipeline
from langchain.chains import RetrievalQA
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch
import tempfile
# Configurações
EMBEDDING_MODEL = "sentence-transformers/all-mpnet-base-v2"
LLM_MODEL = "mistralai/Mistral-7B-v0.1"
class RAGSystem:
def __init__(self):
# Inicializa o modelo de linguagem
self.tokenizer = AutoTokenizer.from_pretrained(LLM_MODEL)
self.model = AutoModelForCausalLM.from_pretrained(
LLM_MODEL,
torch_dtype=torch.float16,
device_map="auto",
load_in_8bit=True # Usa quantização 8-bit para reduzir uso de memória
)
# Configura o pipeline
pipe = pipeline(
"text-generation",
model=self.model,
tokenizer=self.tokenizer,
max_length=2048,
temperature=0.7,
top_p=0.95,
repetition_penalty=1.15
)
# Configura o modelo LangChain
self.llm = HuggingFacePipeline(pipeline=pipe)
# Configura embeddings
self.embeddings = HuggingFaceEmbeddings(
model_name=EMBEDDING_MODEL,
model_kwargs={'device': 'cpu'}
)
def process_pdf(self, file_content: bytes) -> Optional[FAISS]:
"""Processa o PDF e cria a base de conhecimento"""
try:
# Cria arquivo temporário
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp_file:
tmp_file.write(file_content)
tmp_path = tmp_file.name
# Carrega e processa o PDF
loader = PyPDFLoader(tmp_path)
documents = loader.load()
# Remove arquivo temporário
os.unlink(tmp_path)
if not documents:
return None
# Divide o texto em chunks
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=len,
separators=["\n\n", "\n", ".", " ", ""]
)
texts = text_splitter.split_documents(documents)
# Cria base de conhecimento
db = FAISS.from_documents(texts, self.embeddings)
return db
except Exception as e:
print(f"Erro ao processar PDF: {str(e)}")
return None
def generate_response(self, file_obj, query: str) -> str:
"""Gera resposta para a consulta"""
if file_obj is None:
return "Por favor, faça upload de um arquivo PDF."
if not query.strip():
return "Por favor, insira uma pergunta."
try:
# Processa o PDF
db = self.process_pdf(file_obj)
if db is None:
return "Não foi possível processar o PDF."
# Configura o chain RAG
qa_chain = RetrievalQA.from_chain_type(
llm=self.llm,
chain_type="stuff",
retriever=db.as_retriever(
search_kwargs={
"k": 3,
"fetch_k": 5
}
),
return_source_documents=True
)
# Gera resposta
result = qa_chain({"query": query})
return result["result"]
except Exception as e:
return f"Erro ao gerar resposta: {str(e)}"
# Interface Gradio
def create_demo():
rag = RAGSystem()
with gr.Blocks() as demo:
gr.Markdown("# 📚 Sistema RAG com Mistral-7B")
gr.Markdown("""
### Instruções:
1. Faça upload de um arquivo PDF
2. Digite sua pergunta sobre o conteúdo
3. Aguarde a resposta gerada pelo modelo
""")
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(
label="Upload do PDF",
type="binary",
file_types=[".pdf"]
)
query_input = gr.Textbox(
label="Sua Pergunta",
placeholder="Digite sua pergunta sobre o documento...",
lines=3
)
submit_btn = gr.Button("🔍 Pesquisar", variant="primary")
with gr.Column(scale=1):
output = gr.Textbox(
label="Resposta",
lines=10
)
submit_btn.click(
fn=rag.generate_response,
inputs=[file_input, query_input],
outputs=output
)
gr.Examples(
examples=[
[None, "Qual é o tema principal deste documento?"],
[None, "Pode fazer um resumo dos pontos principais?"],
[None, "Quais são as principais conclusões?"]
],
inputs=[file_input, query_input]
)
return demo
if __name__ == "__main__":
demo = create_demo()
demo.launch() |