Spaces:
Running
Running
import gradio as gr | |
from langchain.document_loaders import PyPDFLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.chains import RetrievalQA | |
from langchain.llms import HuggingFaceHub | |
# Configurações | |
EMBEDDING_MODEL = "sentence-transformers/all-mpnet-base-v2" | |
LLM_REPO_ID = "google/flan-t5-large" # Modelo de linguagem da Hugging Face | |
# Função para carregar e processar PDFs | |
def load_and_process_pdf(pdf_path): | |
# Carrega o PDF | |
loader = PyPDFLoader(pdf_path) | |
documents = loader.load() | |
# Divide o texto em chunks | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) | |
texts = text_splitter.split_documents(documents) | |
# Cria embeddings e armazena no vetor store | |
embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL) | |
db = FAISS.from_documents(texts, embeddings) | |
return db | |
# Função para gerar respostas usando RAG | |
def generate_response(pdf_file, query): | |
if pdf_file is None: | |
return "Erro: Nenhum arquivo PDF foi carregado." | |
# Carrega e processa o PDF | |
db = load_and_process_pdf(pdf_file.name) | |
# Configura o modelo de linguagem | |
llm = HuggingFaceHub(repo_id=LLM_REPO_ID, model_kwargs={"temperature": 0.7, "max_length": 512}) | |
# Cria a cadeia de RAG | |
qa_chain = RetrievalQA.from_chain_type( | |
llm=llm, | |
chain_type="stuff", | |
retriever=db.as_retriever(search_kwargs={"k": 3}), | |
return_source_documents=True | |
) | |
# Executa a consulta | |
result = qa_chain({"query": query}) | |
return result["result"] | |
# Interface Gradio | |
iface = gr.Interface( | |
fn=generate_response, | |
inputs=[ | |
gr.File(label="Upload PDF", type="file"), | |
gr.Textbox(label="Sua Pergunta") | |
], | |
outputs=gr.Textbox(label="Resposta Gerada"), | |
title="Sistema de RAG com LangChain", | |
description="Faça upload de um PDF e faça perguntas sobre o conteúdo." | |
) | |
iface.launch(share=True) |