Spaces:
Runtime error
Runtime error
File size: 11,814 Bytes
3ec9224 6b7ae1b ccd769b 6b7ae1b ccd769b f08873e ccd769b 6b7ae1b ccd769b 7e34d60 ccd769b 6b7ae1b 7e34d60 6b7ae1b 7e34d60 6b7ae1b 7e34d60 6b7ae1b 7e34d60 6b7ae1b ccd769b 6b7ae1b 7e34d60 6b7ae1b ccd769b 7e34d60 ccd769b 6b7ae1b 7e34d60 ccd769b 6b7ae1b ccd769b 6b7ae1b ccd769b 6b7ae1b 78e552d 7e34d60 6b7ae1b 7e34d60 6b7ae1b 7e34d60 6b7ae1b ccd769b 6b7ae1b ccd769b 6b7ae1b ccd769b 6b7ae1b ccd769b 7e34d60 6b7ae1b 7e34d60 6b7ae1b ccd769b 7e34d60 6b7ae1b ccd769b 6b7ae1b 7e34d60 6b7ae1b 78e552d 6b7ae1b ccd769b 6b7ae1b ccd769b 7e34d60 5be8df6 71bcd22 099bb87 ccd769b 099bb87 ccd769b 71bcd22 ccd769b 71bcd22 ccd769b 71bcd22 ccd769b 71bcd22 7e34d60 ccd769b 71bcd22 7e34d60 71bcd22 7e34d60 71bcd22 ccd769b 71bcd22 ccd769b 71bcd22 ccd769b 71bcd22 7e34d60 ccd769b 71bcd22 7e34d60 71bcd22 7e34d60 71bcd22 7e34d60 71bcd22 7e34d60 71bcd22 ccd769b 71bcd22 ccd769b 71bcd22 ccd769b 71bcd22 ccd769b 71bcd22 ccd769b 71bcd22 ccd769b 71bcd22 ccd769b 71bcd22 ccd769b 71bcd22 7e34d60 71bcd22 7e34d60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import gradio as gr
import os
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFacePipeline
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain_community.llms import HuggingFaceEndpoint
from pathlib import Path
import chromadb
from unidecode import unidecode
from transformers import AutoTokenizer, pipeline
import transformers
import torch
import tqdm
import accelerate
import re
# Lista de modelos gratuitos que não exigem chave de API
list_llm = [
"mistralai/Mistral-7B-Instruct-v0.2",
"mistralai/Mistral-7B-Instruct-v0.1",
"google/flan-t5-xxl",
"HuggingFaceH4/zephyr-7b-beta",
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"microsoft/phi-2"
]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
# Função para carregar o documento PDF e dividir em partes
def load_doc(list_file_path, chunk_size, chunk_overlap):
loaders = [PyPDFLoader(x) for x in list_file_path]
pages = []
for loader in loaders:
pages.extend(loader.load())
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
)
doc_splits = text_splitter.split_documents(pages)
return doc_splits
# Função para criar o banco de dados vetorial
def create_db(splits, collection_name):
embedding = HuggingFaceEmbeddings()
new_client = chromadb.EphemeralClient()
vectordb = Chroma.from_documents(
documents=splits,
embedding=embedding,
client=new_client,
collection_name=collection_name,
)
return vectordb
# Função para inicializar a cadeia de LLM
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
progress(0.1, desc="Initializing HF tokenizer...")
# Carregar o tokenizer e o pipeline do modelo
tokenizer = AutoTokenizer.from_pretrained(llm_model)
progress(0.5, desc="Initializing HF pipeline...")
pipeline_model = transformers.pipeline(
"text-generation",
model=llm_model,
tokenizer=tokenizer,
torch_dtype=torch.bfloat16,
device_map="auto",
max_new_tokens=max_tokens,
do_sample=True,
top_k=top_k,
temperature=temperature,
)
llm = HuggingFacePipeline(pipeline=pipeline_model)
progress(0.75, desc="Defining buffer memory...")
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key='answer',
return_messages=True
)
retriever = vector_db.as_retriever()
progress(0.8, desc="Defining retrieval chain...")
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
return_source_documents=True,
verbose=False,
)
progress(0.9, desc="Done!")
return qa_chain
# Função para gerar o nome da coleção do banco de dados vetorial
def create_collection_name(filepath):
collection_name = Path(filepath).stem
collection_name = collection_name.replace(" ", "-")
collection_name = unidecode(collection_name)
collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
collection_name = collection_name[:50]
if len(collection_name) < 3:
collection_name = collection_name + 'xyz'
if not collection_name[0].isalnum():
collection_name = 'A' + collection_name[1:]
if not collection_name[-1].isalnum():
collection_name = collection_name[:-1] + 'Z'
return collection_name
# Função para inicializar o banco de dados
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
list_file_path = [x.name for x in list_file_obj if x is not None]
progress(0.1, desc="Creating collection name...")
collection_name = create_collection_name(list_file_path[0])
progress(0.25, desc="Loading document...")
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
progress(0.5, desc="Generating vector database...")
vector_db = create_db(doc_splits, collection_name)
progress(0.9, desc="Done!")
return vector_db, collection_name, "Complete!"
# Função para inicializar a cadeia de QA
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
llm_name = list_llm[llm_option]
print("llm_name: ", llm_name)
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
return qa_chain, "Complete!"
# Função para formatar o histórico de conversa
def format_chat_history(message, chat_history):
formatted_chat_history = []
for user_message, bot_message in chat_history:
formatted_chat_history.append(f"User: {user_message}")
formatted_chat_history.append(f"Assistant: {bot_message}")
return formatted_chat_history
# Função para gerar a conversa
def conversation(qa_chain, message, history):
formatted_chat_history = format_chat_history(message, history)
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
response_answer = response["answer"]
if response_answer.find("Helpful Answer:") != -1:
response_answer = response_answer.split("Helpful Answer:")[-1]
response_sources = response["source_documents"]
response_source1 = response_sources[0].page_content.strip()
response_source2 = response_sources[1].page_content.strip()
response_source3 = response_sources[2].page_content.strip()
response_source1_page = response_sources[0].metadata["page"] + 1
response_source2_page = response_sources[1].metadata["page"] + 1
response_source3_page = response_sources[2].metadata["page"] + 1
new_history = history + [(message, response_answer)]
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
# Função principal para rodar a interface
def demo():
with gr.Blocks(theme="base") as demo:
vector_db = gr.State()
qa_chain = gr.State()
collection_name = gr.State()
gr.Markdown(
"""<center><h2>PDF-based chatbot</center></h2>
<h3>Ask any questions about your PDF documents</h3>""")
gr.Markdown(
"""<b>Note:</b> This AI assistant, using Langchain and open-source LLMs, performs retrieval-augmented generation (RAG) from your PDF documents. \
The user interface explicitely shows multiple steps to help understand the RAG workflow.
This chatbot takes past questions into account when generating answers (via conversational memory), and includes document references for clarity purposes.<br>
<br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate a reply.
""")
with gr.Tab("Step 1 - Upload PDF"):
with gr.Row():
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
with gr.Tab("Step 2 - Process document"):
with gr.Row():
db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value="ChromaDB", type="index", info="Choose your vector database")
with gr.Accordion("Advanced options - Document text splitter", open=False):
with gr.Row():
slider_chunk_size = gr.Slider(minimum=100, maximum=1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
with gr.Row():
slider_chunk_overlap = gr.Slider(minimum=10, maximum=200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
with gr.Row():
db_progress = gr.Textbox(label="Vector database initialization", value="None")
with gr.Row():
db_btn = gr.Button("Generate vector database")
with gr.Tab("Step 3 - Initialize QA chain"):
with gr.Row():
llm_btn = gr.Radio(list_llm_simple, label="LLM models", value=list_llm_simple[0], type="index", info="Choose your LLM model")
with gr.Accordion("Advanced options - LLM model", open=False):
with gr.Row():
slider_temperature = gr.Slider(minimum=0.01, maximum=1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
with gr.Row():
slider_maxtokens = gr.Slider(minimum=224, maximum=4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
with gr.Row():
slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
with gr.Row():
llm_progress = gr.Textbox(value="None", label="QA chain initialization")
with gr.Row():
qachain_btn = gr.Button("Initialize Question Answering chain")
with gr.Tab("Step 4 - Chatbot"):
chatbot = gr.Chatbot(height=300)
with gr.Accordion("Advanced - Document references", open=False):
with gr.Row():
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
source1_page = gr.Number(label="Page", scale=1)
with gr.Row():
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
source2_page = gr.Number(label="Page", scale=1)
with gr.Row():
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
source3_page = gr.Number(label="Page", scale=1)
with gr.Row():
msg = gr.Textbox(placeholder="Type message (e.g. 'What is this document about?')", container=True)
with gr.Row():
submit_btn = gr.Button("Submit message")
clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")
# Eventos de pré-processamento
db_btn.click(initialize_database, inputs=[document, slider_chunk_size, slider_chunk_overlap], outputs=[vector_db, collection_name, db_progress])
qachain_btn.click(initialize_LLM, inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], inputs=None, outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False)
# Eventos do chatbot
msg.submit(conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False)
submit_btn.click(conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False)
clear_btn.click(lambda:[None,"",0,"",0,"",0], inputs=None, outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False)
demo.queue().launch(debug=True)
if __name__ == "__main__":
demo() |