File size: 11,814 Bytes
3ec9224
6b7ae1b
ccd769b
6b7ae1b
 
 
 
ccd769b
 
 
f08873e
ccd769b
 
6b7ae1b
 
 
ccd769b
7e34d60
ccd769b
 
 
 
6b7ae1b
 
7e34d60
 
 
 
 
 
 
 
6b7ae1b
 
 
7e34d60
6b7ae1b
 
 
 
 
 
7e34d60
 
 
6b7ae1b
 
 
7e34d60
6b7ae1b
 
ccd769b
6b7ae1b
 
 
 
 
 
 
 
7e34d60
6b7ae1b
ccd769b
 
7e34d60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccd769b
6b7ae1b
 
 
 
 
7e34d60
 
ccd769b
6b7ae1b
 
 
ccd769b
6b7ae1b
 
 
 
ccd769b
6b7ae1b
78e552d
7e34d60
6b7ae1b
 
7e34d60
6b7ae1b
 
 
 
 
 
 
 
 
 
 
7e34d60
6b7ae1b
 
ccd769b
6b7ae1b
ccd769b
6b7ae1b
ccd769b
6b7ae1b
ccd769b
 
 
7e34d60
6b7ae1b
 
7e34d60
6b7ae1b
ccd769b
 
7e34d60
6b7ae1b
 
 
ccd769b
 
6b7ae1b
 
7e34d60
6b7ae1b
78e552d
 
6b7ae1b
ccd769b
 
6b7ae1b
 
 
 
 
 
 
 
 
ccd769b
7e34d60
5be8df6
71bcd22
099bb87
 
 
 
 
ccd769b
 
099bb87
ccd769b
 
 
 
71bcd22
 
ccd769b
71bcd22
ccd769b
71bcd22
ccd769b
71bcd22
7e34d60
ccd769b
71bcd22
7e34d60
71bcd22
7e34d60
71bcd22
ccd769b
71bcd22
ccd769b
71bcd22
ccd769b
71bcd22
7e34d60
ccd769b
71bcd22
7e34d60
71bcd22
7e34d60
71bcd22
7e34d60
71bcd22
7e34d60
71bcd22
ccd769b
71bcd22
ccd769b
71bcd22
ccd769b
71bcd22
ccd769b
 
71bcd22
ccd769b
 
71bcd22
ccd769b
 
71bcd22
ccd769b
71bcd22
ccd769b
 
71bcd22
7e34d60
 
 
 
 
 
 
 
 
71bcd22
 
 
7e34d60
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import gradio as gr
import os

from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings 
from langchain_community.llms import HuggingFacePipeline
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain_community.llms import HuggingFaceEndpoint

from pathlib import Path
import chromadb
from unidecode import unidecode

from transformers import AutoTokenizer, pipeline
import transformers
import torch
import tqdm 
import accelerate
import re

# Lista de modelos gratuitos que não exigem chave de API
list_llm = [
    "mistralai/Mistral-7B-Instruct-v0.2", 
    "mistralai/Mistral-7B-Instruct-v0.1", 
    "google/flan-t5-xxl", 
    "HuggingFaceH4/zephyr-7b-beta", 
    "TinyLlama/TinyLlama-1.1B-Chat-v1.0", 
    "microsoft/phi-2"
]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]

# Função para carregar o documento PDF e dividir em partes
def load_doc(list_file_path, chunk_size, chunk_overlap):
    loaders = [PyPDFLoader(x) for x in list_file_path]
    pages = []
    for loader in loaders:
        pages.extend(loader.load())
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=chunk_size, 
        chunk_overlap=chunk_overlap
    )
    doc_splits = text_splitter.split_documents(pages)
    return doc_splits

# Função para criar o banco de dados vetorial
def create_db(splits, collection_name):
    embedding = HuggingFaceEmbeddings()
    new_client = chromadb.EphemeralClient()
    vectordb = Chroma.from_documents(
        documents=splits,
        embedding=embedding,
        client=new_client,
        collection_name=collection_name,
    )
    return vectordb

# Função para inicializar a cadeia de LLM
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
    progress(0.1, desc="Initializing HF tokenizer...")
    
    # Carregar o tokenizer e o pipeline do modelo
    tokenizer = AutoTokenizer.from_pretrained(llm_model)
    progress(0.5, desc="Initializing HF pipeline...")
    pipeline_model = transformers.pipeline(
        "text-generation",
        model=llm_model,
        tokenizer=tokenizer,
        torch_dtype=torch.bfloat16,
        device_map="auto",
        max_new_tokens=max_tokens,
        do_sample=True,
        top_k=top_k,
        temperature=temperature,
    )
    llm = HuggingFacePipeline(pipeline=pipeline_model)

    progress(0.75, desc="Defining buffer memory...")
    memory = ConversationBufferMemory(
        memory_key="chat_history",
        output_key='answer',
        return_messages=True
    )
    retriever = vector_db.as_retriever()

    progress(0.8, desc="Defining retrieval chain...")
    qa_chain = ConversationalRetrievalChain.from_llm(
        llm,
        retriever=retriever,
        chain_type="stuff", 
        memory=memory,
        return_source_documents=True,
        verbose=False,
    )
    progress(0.9, desc="Done!")
    return qa_chain

# Função para gerar o nome da coleção do banco de dados vetorial
def create_collection_name(filepath):
    collection_name = Path(filepath).stem
    collection_name = collection_name.replace(" ", "-") 
    collection_name = unidecode(collection_name)
    collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
    collection_name = collection_name[:50]
    if len(collection_name) < 3:
        collection_name = collection_name + 'xyz'
    if not collection_name[0].isalnum():
        collection_name = 'A' + collection_name[1:]
    if not collection_name[-1].isalnum():
        collection_name = collection_name[:-1] + 'Z'
    return collection_name

# Função para inicializar o banco de dados
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
    list_file_path = [x.name for x in list_file_obj if x is not None]
    progress(0.1, desc="Creating collection name...")
    collection_name = create_collection_name(list_file_path[0])
    progress(0.25, desc="Loading document...")
    doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
    progress(0.5, desc="Generating vector database...")
    vector_db = create_db(doc_splits, collection_name)
    progress(0.9, desc="Done!")
    return vector_db, collection_name, "Complete!"

# Função para inicializar a cadeia de QA
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
    llm_name = list_llm[llm_option]
    print("llm_name: ", llm_name)
    qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
    return qa_chain, "Complete!"

# Função para formatar o histórico de conversa
def format_chat_history(message, chat_history):
    formatted_chat_history = []
    for user_message, bot_message in chat_history:
        formatted_chat_history.append(f"User: {user_message}")
        formatted_chat_history.append(f"Assistant: {bot_message}")
    return formatted_chat_history

# Função para gerar a conversa
def conversation(qa_chain, message, history):
    formatted_chat_history = format_chat_history(message, history)
    response = qa_chain({"question": message, "chat_history": formatted_chat_history})
    response_answer = response["answer"]
    if response_answer.find("Helpful Answer:") != -1:
        response_answer = response_answer.split("Helpful Answer:")[-1]
    response_sources = response["source_documents"]
    response_source1 = response_sources[0].page_content.strip()
    response_source2 = response_sources[1].page_content.strip()
    response_source3 = response_sources[2].page_content.strip()
    response_source1_page = response_sources[0].metadata["page"] + 1
    response_source2_page = response_sources[1].metadata["page"] + 1
    response_source3_page = response_sources[2].metadata["page"] + 1
    new_history = history + [(message, response_answer)]
    return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page

# Função principal para rodar a interface
def demo():
    with gr.Blocks(theme="base") as demo:
        vector_db = gr.State()
        qa_chain = gr.State()
        collection_name = gr.State()
        
        gr.Markdown(
        """<center><h2>PDF-based chatbot</center></h2>
        <h3>Ask any questions about your PDF documents</h3>""")
        gr.Markdown(
        """<b>Note:</b> This AI assistant, using Langchain and open-source LLMs, performs retrieval-augmented generation (RAG) from your PDF documents. \
        The user interface explicitely shows multiple steps to help understand the RAG workflow. 
        This chatbot takes past questions into account when generating answers (via conversational memory), and includes document references for clarity purposes.<br>
        <br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate a reply.
        """)
        
        with gr.Tab("Step 1 - Upload PDF"):
            with gr.Row():
                document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
        
        with gr.Tab("Step 2 - Process document"):
            with gr.Row():
                db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value="ChromaDB", type="index", info="Choose your vector database")
            with gr.Accordion("Advanced options - Document text splitter", open=False):
                with gr.Row():
                    slider_chunk_size = gr.Slider(minimum=100, maximum=1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
                with gr.Row():
                    slider_chunk_overlap = gr.Slider(minimum=10, maximum=200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
            with gr.Row():
                db_progress = gr.Textbox(label="Vector database initialization", value="None")
            with gr.Row():
                db_btn = gr.Button("Generate vector database")
            
        with gr.Tab("Step 3 - Initialize QA chain"):
            with gr.Row():
                llm_btn = gr.Radio(list_llm_simple, label="LLM models", value=list_llm_simple[0], type="index", info="Choose your LLM model")
            with gr.Accordion("Advanced options - LLM model", open=False):
                with gr.Row():
                    slider_temperature = gr.Slider(minimum=0.01, maximum=1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
                with gr.Row():
                    slider_maxtokens = gr.Slider(minimum=224, maximum=4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
                with gr.Row():
                    slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
            with gr.Row():
                llm_progress = gr.Textbox(value="None", label="QA chain initialization")
            with gr.Row():
                qachain_btn = gr.Button("Initialize Question Answering chain")

        with gr.Tab("Step 4 - Chatbot"):
            chatbot = gr.Chatbot(height=300)
            with gr.Accordion("Advanced - Document references", open=False):
                with gr.Row():
                    doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
                    source1_page = gr.Number(label="Page", scale=1)
                with gr.Row():
                    doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
                    source2_page = gr.Number(label="Page", scale=1)
                with gr.Row():
                    doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
                    source3_page = gr.Number(label="Page", scale=1)
            with gr.Row():
                msg = gr.Textbox(placeholder="Type message (e.g. 'What is this document about?')", container=True)
            with gr.Row():
                submit_btn = gr.Button("Submit message")
                clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")
            
        # Eventos de pré-processamento
        db_btn.click(initialize_database, inputs=[document, slider_chunk_size, slider_chunk_overlap], outputs=[vector_db, collection_name, db_progress])
        qachain_btn.click(initialize_LLM, inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], inputs=None, outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False)

        # Eventos do chatbot
        msg.submit(conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False)
        submit_btn.click(conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False)
        clear_btn.click(lambda:[None,"",0,"",0,"",0], inputs=None, outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False)
    
    demo.queue().launch(debug=True)

if __name__ == "__main__":
    demo()