Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_community.vectorstores import Chroma | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_community.llms import HuggingFaceEndpoint | |
from langchain.memory import ConversationBufferMemory | |
from pathlib import Path | |
import chromadb | |
from unidecode import unidecode | |
import re | |
# Modelos LLM disponíveis | |
list_llm = [ | |
"mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.1", | |
"google/gemma-7b-it", "google/gemma-2b-it", "HuggingFaceH4/zephyr-7b-beta", "HuggingFaceH4/zephyr-7b-gemma-v0.1", | |
"meta-llama/Llama-2-7b-chat-hf", "microsoft/phi-2", "TinyLlama/TinyLlama-1.1B-Chat-v1.0", "mosaicml/mpt-7b-instruct", | |
"tiiuae/falcon-7b-instruct", "google/flan-t5-xxl" | |
] | |
list_llm_simple = [os.path.basename(llm) for llm in list_llm] | |
# Função de carregamento e divisão de documentos | |
def load_and_split_documents(list_file_path, chunk_size, chunk_overlap): | |
loaders = [PyPDFLoader(x) for x in list_file_path] | |
pages = [] | |
for loader in loaders: | |
pages.extend(loader.load()) | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) | |
return text_splitter.split_documents(pages) | |
# Função para criar banco de dados vetorial com ChromaDB | |
def create_vector_db(splits, collection_name): | |
embedding = HuggingFaceEmbeddings() | |
new_client = chromadb.PersistentClient(path="./chroma_db") | |
return Chroma.from_documents(documents=splits, embedding=embedding, client=new_client, collection_name=collection_name) | |
# Função para inicializar a cadeia de QA | |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): | |
progress(0.1, desc="Inicializando tokenizer e Hub...") | |
llm = HuggingFaceEndpoint( | |
repo_id=llm_model, temperature=temperature, max_new_tokens=max_tokens, top_k=top_k, load_in_8bit=True | |
) | |
progress(0.5, desc="Definindo memória de buffer e cadeia de recuperação...") | |
memory = ConversationBufferMemory(memory_key="chat_history", output_key='answer', return_messages=True) | |
retriever = vector_db.as_retriever() | |
qa_chain = ConversationalRetrievalChain.from_llm(llm, retriever=retriever, chain_type="stuff", memory=memory, return_source_documents=True) | |
progress(0.9, desc="Concluído!") | |
return qa_chain | |
# Função para gerar um nome de coleção válido | |
def create_collection_name(filepath): | |
collection_name = Path(filepath).stem | |
collection_name = unidecode(collection_name.replace(" ", "-")) | |
return re.sub('[^A-Za-z0-9]+', '-', collection_name)[:50] | |
# Função para inicializar o banco de dados e o modelo LLM | |
def initialize_database_and_llm(list_file_obj, chunk_size, chunk_overlap, llm_option, llm_temperature, max_tokens, top_k, progress=gr.Progress()): | |
list_file_path = [x.name for x in list_file_obj if x is not None] | |
progress(0.1, desc="Criando nome da coleção...") | |
collection_name = create_collection_name(list_file_path[0]) | |
progress(0.25, desc="Carregando e dividindo documentos...") | |
doc_splits = load_and_split_documents(list_file_path, chunk_size, chunk_overlap) | |
progress(0.5, desc="Gerando banco de dados vetorial...") | |
vector_db = create_vector_db(doc_splits, collection_name) | |
progress(0.75, desc="Inicializando modelo LLM...") | |
llm_name = list_llm[llm_option] | |
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress) | |
progress(0.9, desc="Concluído!") | |
return vector_db, collection_name, qa_chain | |
# Função de interação com o chatbot | |
def conversation(qa_chain, message, history): | |
formatted_chat_history = [f"Usuário: {user_message}\nAssistente: {bot_message}" for user_message, bot_message in history] | |
response = qa_chain({"question": message, "chat_history": formatted_chat_history}) | |
response_answer = response["answer"].split("Resposta útil:")[-1] | |
response_sources = [doc.page_content.strip() for doc in response["source_documents"]] | |
response_pages = [doc.metadata["page"] + 1 for doc in response["source_documents"]] | |
new_history = history + [(message, response_answer)] | |
return qa_chain, gr.update(value=""), new_history, *response_sources, *response_pages | |
# Função de carregamento de arquivos | |
def upload_file(file_obj): | |
return [file_obj.name for file_obj in file_obj if file_obj is not None] | |
# Interface Gradio | |
def demo(): | |
with gr.Blocks(theme="base") as demo: | |
vector_db, qa_chain, collection_name = gr.State(), gr.State(), gr.State() | |
gr.Markdown("<center><h2>Chatbot baseado em PDF</center></h2><h3>Faça qualquer pergunta sobre seus documentos PDF</h3>") | |
with gr.Tab("Etapa 1 - Carregar PDF"): | |
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"]) | |
with gr.Tab("Etapa 2 - Processar documento"): | |
db_btn = gr.Button("Gerar banco de dados vetorial") | |
slider_chunk_size = gr.Slider(minimum=100, maximum=1000, value=600, step=20, label="Tamanho do bloco") | |
slider_chunk_overlap = gr.Slider(minimum=10, maximum=200, value=40, step=10, label="Sobreposição do bloco") | |
db_progress = gr.Textbox(label="Inicialização do banco de dados vetorial") | |
with gr.Tab("Etapa 3 - Inicializar cadeia de QA"): | |
llm_btn = gr.Radio(list_llm_simple, label="Modelos LLM") | |
slider_temperature = gr.Slider(minimum=0.01, maximum=1.0, value=0.7, step=0.1, label="Temperatura") | |
slider_maxtokens = gr.Slider(minimum=224, maximum=4096, value=1024, step=32, label="Máximo de Tokens") | |
slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="Amostras top-k") | |
llm_progress = gr.Textbox(value="Nenhum", label="Inicialização da cadeia QA") | |
qachain_btn = gr.Button("Inicializar cadeia de Pergunta e Resposta") | |
with gr.Tab("Etapa 4 - Chatbot"): | |
chatbot = gr.Chatbot(height=300) | |
doc_source1, doc_source2, doc_source3 = gr.Textbox(label="Referência 1"), gr.Textbox(label="Referência 2"), gr.Textbox(label="Referência 3") | |
source1_page, source2_page, source3_page = gr.Number(label="Página 1"), gr.Number(label="Página 2"), gr.Number(label="Página 3") | |
# Campo de texto para enviar mensagens | |
user_input = gr.Textbox(label="Sua mensagem") | |
# Implementação de lógica de interação de conversa | |
def send_message(message, history, qa_chain): | |
formatted_chat_history = [f"Usuário: {user_message}\nAssistente: {bot_message}" for user_message, bot_message in history] | |
response = qa_chain({"question": message, "chat_history": formatted_chat_history}) | |
response_answer = response["answer"].split("Resposta útil:")[-1] | |
response_sources = [doc.page_content.strip() for doc in response["source_documents"]] | |
response_pages = [doc.metadata["page"] + 1 for doc in response["source_documents"]] | |
new_history = history + [(message, response_answer)] | |
return qa_chain, gr.update(value=""), new_history, *response_sources, *response_pages | |
user_input.submit(send_message, inputs=[user_input, chatbot.history, qa_chain], outputs=[qa_chain, gr.update(value=""), chatbot.history, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page]) | |
demo.launch() | |