pdfchatbot / rag_functions.py
DHEIVER's picture
Create rag_functions.py
791cd44 verified
raw
history blame
7.72 kB
# rag_functions.py
import os
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFaceEndpoint
from langchain.memory import ConversationBufferMemory
from pathlib import Path
import chromadb
from unidecode import unidecode
import re
# Lista de modelos LLM disponíveis
list_llm = [
"mistralai/Mistral-7B-Instruct-v0.2",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mistral-7B-Instruct-v0.1",
"google/gemma-7b-it",
"google/gemma-2b-it",
"HuggingFaceH4/zephyr-7b-beta",
"HuggingFaceH4/zephyr-7b-gemma-v0.1",
"meta-llama/Llama-2-7b-chat-hf",
"microsoft/phi-2",
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"mosaicml/mpt-7b-instruct",
"tiiuae/falcon-7b-instruct",
"google/flan-t5-xxl"
]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
# Função para carregar documentos PDF e dividir em chunks
def load_doc(list_file_path, chunk_size, chunk_overlap):
loaders = [PyPDFLoader(x) for x in list_file_path]
pages = []
for loader in loaders:
pages.extend(loader.load())
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
)
doc_splits = text_splitter.split_documents(pages)
return doc_splits
# Função para criar o banco de dados vetorial
def create_db(splits, collection_name):
embedding = HuggingFaceEmbeddings()
# Usando PersistentClient para persistir o banco de dados
new_client = chromadb.PersistentClient(path="./chroma_db")
vectordb = Chroma.from_documents(
documents=splits,
embedding=embedding,
client=new_client,
collection_name=collection_name,
)
return vectordb
# Função para inicializar a cadeia de QA com o modelo LLM
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=None):
if progress:
progress(0.1, desc="Inicializando tokenizer da HF...")
progress(0.5, desc="Inicializando Hub da HF...")
if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
llm = HuggingFaceEndpoint(
repo_id=llm_model,
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k,
load_in_8bit=True,
)
elif llm_model in ["HuggingFaceH4/zephyr-7b-gemma-v0.1", "mosaicml/mpt-7b-instruct"]:
raise ValueError("O modelo LLM é muito grande para ser carregado automaticamente no endpoint de inferência gratuito")
elif llm_model == "microsoft/phi-2":
llm = HuggingFaceEndpoint(
repo_id=llm_model,
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k,
trust_remote_code=True,
torch_dtype="auto",
)
elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
llm = HuggingFaceEndpoint(
repo_id=llm_model,
temperature=temperature,
max_new_tokens=250,
top_k=top_k,
)
elif llm_model == "meta-llama/Llama-2-7b-chat-hf":
raise ValueError("O modelo Llama-2-7b-chat-hf requer uma assinatura Pro...")
else:
llm = HuggingFaceEndpoint(
repo_id=llm_model,
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k,
)
if progress:
progress(0.75, desc="Definindo memória de buffer...")
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key='answer',
return_messages=True
)
retriever = vector_db.as_retriever()
if progress:
progress(0.8, desc="Definindo cadeia de recuperação...")
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
return_source_documents=True,
verbose=False,
)
if progress:
progress(0.9, desc="Concluído!")
return qa_chain
# Função para gerar um nome de coleção válido
def create_collection_name(filepath):
collection_name = Path(filepath).stem
collection_name = collection_name.replace(" ", "-")
collection_name = unidecode(collection_name)
collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
collection_name = collection_name[:50]
if len(collection_name) < 3:
collection_name = collection_name + 'xyz'
if not collection_name[0].isalnum():
collection_name = 'A' + collection_name[1:]
if not collection_name[-1].isalnum():
collection_name = collection_name[:-1] + 'Z'
print('Caminho do arquivo: ', filepath)
print('Nome da coleção: ', collection_name)
return collection_name
# Função para inicializar o banco de dados
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=None):
list_file_path = [x.name for x in list_file_obj if x is not None]
if progress:
progress(0.1, desc="Criando nome da coleção...")
collection_name = create_collection_name(list_file_path[0])
if progress:
progress(0.25, desc="Carregando documento...")
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
if progress:
progress(0.5, desc="Gerando banco de dados vetorial...")
vector_db = create_db(doc_splits, collection_name)
if progress:
progress(0.9, desc="Concluído!")
return vector_db, collection_name, "Completo!"
# Função para inicializar o modelo LLM
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=None):
llm_name = list_llm[llm_option]
print("Nome do LLM: ", llm_name)
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
return qa_chain, "Completo!"
# Função para formatar o histórico de conversa
def format_chat_history(message, chat_history):
formatted_chat_history = []
for user_message, bot_message in chat_history:
formatted_chat_history.append(f"Usuário: {user_message}")
formatted_chat_history.append(f"Assistente: {bot_message}")
return formatted_chat_history
# Função para realizar a conversa com o chatbot
def conversation(qa_chain, message, history):
formatted_chat_history = format_chat_history(message, history)
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
response_answer = response["answer"]
if response_answer.find("Resposta útil:") != -1:
response_answer = response_answer.split("Resposta útil:")[-1]
response_sources = response["source_documents"]
response_source1 = response_sources[0].page_content.strip()
response_source2 = response_sources[1].page_content.strip()
response_source3 = response_sources[2].page_content.strip()
response_source1_page = response_sources[0].metadata["page"] + 1
response_source2_page = response_sources[1].metadata["page"] + 1
response_source3_page = response_sources[2].metadata["page"] + 1
new_history = history + [(message, response_answer)]
return qa_chain, "", new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
# Função para carregar arquivos
def upload_file(file_obj):
list_file_path = []
for idx, file in enumerate(file_obj):
file_path = file_obj.name
list_file_path.append(file_path)
return list_file_path