Spaces:
Runtime error
Runtime error
# rag_functions.py | |
import os | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_community.vectorstores import Chroma | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_community.llms import HuggingFaceEndpoint | |
from langchain.memory import ConversationBufferMemory | |
from pathlib import Path | |
import chromadb | |
from unidecode import unidecode | |
import re | |
# Lista de modelos LLM disponíveis | |
list_llm = [ | |
"mistralai/Mistral-7B-Instruct-v0.2", | |
"mistralai/Mixtral-8x7B-Instruct-v0.1", | |
"mistralai/Mistral-7B-Instruct-v0.1", | |
"google/gemma-7b-it", | |
"google/gemma-2b-it", | |
"HuggingFaceH4/zephyr-7b-beta", | |
"HuggingFaceH4/zephyr-7b-gemma-v0.1", | |
"meta-llama/Llama-2-7b-chat-hf", | |
"microsoft/phi-2", | |
"TinyLlama/TinyLlama-1.1B-Chat-v1.0", | |
"mosaicml/mpt-7b-instruct", | |
"tiiuae/falcon-7b-instruct", | |
"google/flan-t5-xxl" | |
] | |
list_llm_simple = [os.path.basename(llm) for llm in list_llm] | |
# Função para carregar documentos PDF e dividir em chunks | |
def load_doc(list_file_path, chunk_size, chunk_overlap): | |
loaders = [PyPDFLoader(x) for x in list_file_path] | |
pages = [] | |
for loader in loaders: | |
pages.extend(loader.load()) | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=chunk_size, | |
chunk_overlap=chunk_overlap | |
) | |
doc_splits = text_splitter.split_documents(pages) | |
return doc_splits | |
# Função para criar o banco de dados vetorial | |
def create_db(splits, collection_name): | |
embedding = HuggingFaceEmbeddings() | |
# Usando PersistentClient para persistir o banco de dados | |
new_client = chromadb.PersistentClient(path="./chroma_db") | |
vectordb = Chroma.from_documents( | |
documents=splits, | |
embedding=embedding, | |
client=new_client, | |
collection_name=collection_name, | |
) | |
return vectordb | |
# Função para inicializar a cadeia de QA com o modelo LLM | |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=None): | |
if progress: | |
progress(0.1, desc="Inicializando tokenizer da HF...") | |
progress(0.5, desc="Inicializando Hub da HF...") | |
if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1": | |
llm = HuggingFaceEndpoint( | |
repo_id=llm_model, | |
temperature=temperature, | |
max_new_tokens=max_tokens, | |
top_k=top_k, | |
load_in_8bit=True, | |
) | |
elif llm_model in ["HuggingFaceH4/zephyr-7b-gemma-v0.1", "mosaicml/mpt-7b-instruct"]: | |
raise ValueError("O modelo LLM é muito grande para ser carregado automaticamente no endpoint de inferência gratuito") | |
elif llm_model == "microsoft/phi-2": | |
llm = HuggingFaceEndpoint( | |
repo_id=llm_model, | |
temperature=temperature, | |
max_new_tokens=max_tokens, | |
top_k=top_k, | |
trust_remote_code=True, | |
torch_dtype="auto", | |
) | |
elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0": | |
llm = HuggingFaceEndpoint( | |
repo_id=llm_model, | |
temperature=temperature, | |
max_new_tokens=250, | |
top_k=top_k, | |
) | |
elif llm_model == "meta-llama/Llama-2-7b-chat-hf": | |
raise ValueError("O modelo Llama-2-7b-chat-hf requer uma assinatura Pro...") | |
else: | |
llm = HuggingFaceEndpoint( | |
repo_id=llm_model, | |
temperature=temperature, | |
max_new_tokens=max_tokens, | |
top_k=top_k, | |
) | |
if progress: | |
progress(0.75, desc="Definindo memória de buffer...") | |
memory = ConversationBufferMemory( | |
memory_key="chat_history", | |
output_key='answer', | |
return_messages=True | |
) | |
retriever = vector_db.as_retriever() | |
if progress: | |
progress(0.8, desc="Definindo cadeia de recuperação...") | |
qa_chain = ConversationalRetrievalChain.from_llm( | |
llm, | |
retriever=retriever, | |
chain_type="stuff", | |
memory=memory, | |
return_source_documents=True, | |
verbose=False, | |
) | |
if progress: | |
progress(0.9, desc="Concluído!") | |
return qa_chain | |
# Função para gerar um nome de coleção válido | |
def create_collection_name(filepath): | |
collection_name = Path(filepath).stem | |
collection_name = collection_name.replace(" ", "-") | |
collection_name = unidecode(collection_name) | |
collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name) | |
collection_name = collection_name[:50] | |
if len(collection_name) < 3: | |
collection_name = collection_name + 'xyz' | |
if not collection_name[0].isalnum(): | |
collection_name = 'A' + collection_name[1:] | |
if not collection_name[-1].isalnum(): | |
collection_name = collection_name[:-1] + 'Z' | |
print('Caminho do arquivo: ', filepath) | |
print('Nome da coleção: ', collection_name) | |
return collection_name | |
# Função para inicializar o banco de dados | |
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=None): | |
list_file_path = [x.name for x in list_file_obj if x is not None] | |
if progress: | |
progress(0.1, desc="Criando nome da coleção...") | |
collection_name = create_collection_name(list_file_path[0]) | |
if progress: | |
progress(0.25, desc="Carregando documento...") | |
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap) | |
if progress: | |
progress(0.5, desc="Gerando banco de dados vetorial...") | |
vector_db = create_db(doc_splits, collection_name) | |
if progress: | |
progress(0.9, desc="Concluído!") | |
return vector_db, collection_name, "Completo!" | |
# Função para inicializar o modelo LLM | |
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=None): | |
llm_name = list_llm[llm_option] | |
print("Nome do LLM: ", llm_name) | |
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress) | |
return qa_chain, "Completo!" | |
# Função para formatar o histórico de conversa | |
def format_chat_history(message, chat_history): | |
formatted_chat_history = [] | |
for user_message, bot_message in chat_history: | |
formatted_chat_history.append(f"Usuário: {user_message}") | |
formatted_chat_history.append(f"Assistente: {bot_message}") | |
return formatted_chat_history | |
# Função para realizar a conversa com o chatbot | |
def conversation(qa_chain, message, history): | |
formatted_chat_history = format_chat_history(message, history) | |
response = qa_chain({"question": message, "chat_history": formatted_chat_history}) | |
response_answer = response["answer"] | |
if response_answer.find("Resposta útil:") != -1: | |
response_answer = response_answer.split("Resposta útil:")[-1] | |
response_sources = response["source_documents"] | |
response_source1 = response_sources[0].page_content.strip() | |
response_source2 = response_sources[1].page_content.strip() | |
response_source3 = response_sources[2].page_content.strip() | |
response_source1_page = response_sources[0].metadata["page"] + 1 | |
response_source2_page = response_sources[1].metadata["page"] + 1 | |
response_source3_page = response_sources[2].metadata["page"] + 1 | |
new_history = history + [(message, response_answer)] | |
return qa_chain, "", new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page | |
# Função para carregar arquivos | |
def upload_file(file_obj): | |
list_file_path = [] | |
for idx, file in enumerate(file_obj): | |
file_path = file_obj.name | |
list_file_path.append(file_path) | |
return list_file_path |