Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -7,9 +7,7 @@ from langchain_community.vectorstores import Chroma
|
|
7 |
from langchain.chains import ConversationalRetrievalChain
|
8 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
9 |
from langchain_community.llms import HuggingFacePipeline
|
10 |
-
from langchain.chains import ConversationChain
|
11 |
from langchain.memory import ConversationBufferMemory
|
12 |
-
from langchain_community.llms import HuggingFaceEndpoint
|
13 |
|
14 |
from pathlib import Path
|
15 |
import chromadb
|
@@ -18,22 +16,25 @@ from unidecode import unidecode
|
|
18 |
from transformers import AutoTokenizer, pipeline
|
19 |
import transformers
|
20 |
import torch
|
21 |
-
import tqdm
|
22 |
-
import accelerate
|
23 |
import re
|
24 |
|
25 |
-
# Lista de modelos
|
26 |
list_llm = [
|
27 |
-
"
|
28 |
-
"
|
29 |
-
"
|
30 |
-
"
|
31 |
-
"
|
32 |
-
"
|
|
|
|
|
|
|
|
|
33 |
]
|
|
|
34 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
35 |
|
36 |
-
# Função para carregar
|
37 |
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
38 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
39 |
pages = []
|
@@ -43,29 +44,26 @@ def load_doc(list_file_path, chunk_size, chunk_overlap):
|
|
43 |
chunk_size=chunk_size,
|
44 |
chunk_overlap=chunk_overlap
|
45 |
)
|
46 |
-
|
47 |
-
return doc_splits
|
48 |
|
49 |
-
# Função para criar
|
50 |
def create_db(splits, collection_name):
|
51 |
embedding = HuggingFaceEmbeddings()
|
52 |
-
|
53 |
-
vectordb = Chroma.from_documents(
|
54 |
documents=splits,
|
55 |
embedding=embedding,
|
56 |
-
client=
|
57 |
-
collection_name=collection_name
|
58 |
)
|
59 |
-
return vectordb
|
60 |
|
61 |
-
# Função para inicializar
|
62 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
63 |
-
progress(0.1, desc="
|
64 |
|
65 |
-
# Carregar o tokenizer e o pipeline do modelo
|
66 |
tokenizer = AutoTokenizer.from_pretrained(llm_model)
|
67 |
-
|
68 |
-
|
|
|
69 |
"text-generation",
|
70 |
model=llm_model,
|
71 |
tokenizer=tokenizer,
|
@@ -74,166 +72,75 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
74 |
max_new_tokens=max_tokens,
|
75 |
do_sample=True,
|
76 |
top_k=top_k,
|
77 |
-
temperature=temperature
|
78 |
)
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
82 |
memory = ConversationBufferMemory(
|
83 |
memory_key="chat_history",
|
84 |
-
output_key='answer',
|
85 |
return_messages=True
|
86 |
)
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
retriever=retriever,
|
93 |
-
chain_type="stuff",
|
94 |
memory=memory,
|
95 |
-
|
96 |
-
|
97 |
)
|
98 |
-
progress(0.9, desc="Done!")
|
99 |
-
return qa_chain
|
100 |
-
|
101 |
-
# Função para gerar o nome da coleção do banco de dados vetorial
|
102 |
-
def create_collection_name(filepath):
|
103 |
-
collection_name = Path(filepath).stem
|
104 |
-
collection_name = collection_name.replace(" ", "-")
|
105 |
-
collection_name = unidecode(collection_name)
|
106 |
-
collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
|
107 |
-
collection_name = collection_name[:50]
|
108 |
-
if len(collection_name) < 3:
|
109 |
-
collection_name = collection_name + 'xyz'
|
110 |
-
if not collection_name[0].isalnum():
|
111 |
-
collection_name = 'A' + collection_name[1:]
|
112 |
-
if not collection_name[-1].isalnum():
|
113 |
-
collection_name = collection_name[:-1] + 'Z'
|
114 |
-
return collection_name
|
115 |
-
|
116 |
-
# Função para inicializar o banco de dados
|
117 |
-
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
|
118 |
-
list_file_path = [x.name for x in list_file_obj if x is not None]
|
119 |
-
progress(0.1, desc="Creating collection name...")
|
120 |
-
collection_name = create_collection_name(list_file_path[0])
|
121 |
-
progress(0.25, desc="Loading document...")
|
122 |
-
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
|
123 |
-
progress(0.5, desc="Generating vector database...")
|
124 |
-
vector_db = create_db(doc_splits, collection_name)
|
125 |
-
progress(0.9, desc="Done!")
|
126 |
-
return vector_db, collection_name, "Complete!"
|
127 |
-
|
128 |
-
# Função para inicializar a cadeia de QA
|
129 |
-
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
130 |
-
llm_name = list_llm[llm_option]
|
131 |
-
print("llm_name: ", llm_name)
|
132 |
-
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
|
133 |
-
return qa_chain, "Complete!"
|
134 |
-
|
135 |
-
# Função para formatar o histórico de conversa
|
136 |
-
def format_chat_history(message, chat_history):
|
137 |
-
formatted_chat_history = []
|
138 |
-
for user_message, bot_message in chat_history:
|
139 |
-
formatted_chat_history.append(f"User: {user_message}")
|
140 |
-
formatted_chat_history.append(f"Assistant: {bot_message}")
|
141 |
-
return formatted_chat_history
|
142 |
|
143 |
-
#
|
144 |
-
def conversation(qa_chain, message, history):
|
145 |
-
formatted_chat_history = format_chat_history(message, history)
|
146 |
-
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
|
147 |
-
response_answer = response["answer"]
|
148 |
-
if response_answer.find("Helpful Answer:") != -1:
|
149 |
-
response_answer = response_answer.split("Helpful Answer:")[-1]
|
150 |
-
response_sources = response["source_documents"]
|
151 |
-
response_source1 = response_sources[0].page_content.strip()
|
152 |
-
response_source2 = response_sources[1].page_content.strip()
|
153 |
-
response_source3 = response_sources[2].page_content.strip()
|
154 |
-
response_source1_page = response_sources[0].metadata["page"] + 1
|
155 |
-
response_source2_page = response_sources[1].metadata["page"] + 1
|
156 |
-
response_source3_page = response_sources[2].metadata["page"] + 1
|
157 |
-
new_history = history + [(message, response_answer)]
|
158 |
-
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
159 |
-
|
160 |
-
# Função principal para rodar a interface
|
161 |
def demo():
|
162 |
-
with gr.Blocks(theme=
|
163 |
vector_db = gr.State()
|
164 |
qa_chain = gr.State()
|
165 |
-
collection_name = gr.State()
|
166 |
-
|
167 |
-
gr.Markdown(
|
168 |
-
"""<center><h2>PDF-based chatbot</center></h2>
|
169 |
-
<h3>Ask any questions about your PDF documents</h3>""")
|
170 |
-
gr.Markdown(
|
171 |
-
"""<b>Note:</b> This AI assistant, using Langchain and open-source LLMs, performs retrieval-augmented generation (RAG) from your PDF documents. \
|
172 |
-
The user interface explicitely shows multiple steps to help understand the RAG workflow.
|
173 |
-
This chatbot takes past questions into account when generating answers (via conversational memory), and includes document references for clarity purposes.<br>
|
174 |
-
<br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate a reply.
|
175 |
-
""")
|
176 |
|
177 |
-
|
178 |
-
with gr.Row():
|
179 |
-
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
|
180 |
|
181 |
-
with gr.Tab("
|
182 |
-
|
183 |
-
db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value="ChromaDB", type="index", info="Choose your vector database")
|
184 |
-
with gr.Accordion("Advanced options - Document text splitter", open=False):
|
185 |
-
with gr.Row():
|
186 |
-
slider_chunk_size = gr.Slider(minimum=100, maximum=1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
|
187 |
-
with gr.Row():
|
188 |
-
slider_chunk_overlap = gr.Slider(minimum=10, maximum=200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
|
189 |
-
with gr.Row():
|
190 |
-
db_progress = gr.Textbox(label="Vector database initialization", value="None")
|
191 |
-
with gr.Row():
|
192 |
-
db_btn = gr.Button("Generate vector database")
|
193 |
|
194 |
-
with gr.Tab("
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
with gr.Row():
|
199 |
-
slider_temperature = gr.Slider(minimum=0.01, maximum=1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
|
200 |
-
with gr.Row():
|
201 |
-
slider_maxtokens = gr.Slider(minimum=224, maximum=4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
|
202 |
-
with gr.Row():
|
203 |
-
slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
|
204 |
-
with gr.Row():
|
205 |
-
llm_progress = gr.Textbox(value="None", label="QA chain initialization")
|
206 |
-
with gr.Row():
|
207 |
-
qachain_btn = gr.Button("Initialize Question Answering chain")
|
208 |
-
|
209 |
-
with gr.Tab("Step 4 - Chatbot"):
|
210 |
-
chatbot = gr.Chatbot(height=300)
|
211 |
-
with gr.Accordion("Advanced - Document references", open=False):
|
212 |
-
with gr.Row():
|
213 |
-
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
|
214 |
-
source1_page = gr.Number(label="Page", scale=1)
|
215 |
-
with gr.Row():
|
216 |
-
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
|
217 |
-
source2_page = gr.Number(label="Page", scale=1)
|
218 |
-
with gr.Row():
|
219 |
-
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
|
220 |
-
source3_page = gr.Number(label="Page", scale=1)
|
221 |
-
with gr.Row():
|
222 |
-
msg = gr.Textbox(placeholder="Type message (e.g. 'What is this document about?')", container=True)
|
223 |
-
with gr.Row():
|
224 |
-
submit_btn = gr.Button("Submit message")
|
225 |
-
clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")
|
226 |
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
|
238 |
if __name__ == "__main__":
|
239 |
demo()
|
|
|
7 |
from langchain.chains import ConversationalRetrievalChain
|
8 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
9 |
from langchain_community.llms import HuggingFacePipeline
|
|
|
10 |
from langchain.memory import ConversationBufferMemory
|
|
|
11 |
|
12 |
from pathlib import Path
|
13 |
import chromadb
|
|
|
16 |
from transformers import AutoTokenizer, pipeline
|
17 |
import transformers
|
18 |
import torch
|
|
|
|
|
19 |
import re
|
20 |
|
21 |
+
# Lista de modelos 100% abertos e gratuitos
|
22 |
list_llm = [
|
23 |
+
"google/flan-t5-xxl", # Modelo para tarefas text-to-text
|
24 |
+
"TinyLlama/TinyLlama-1.1B-Chat-v1.0", # Modelo leve para diálogo
|
25 |
+
"microsoft/phi-2", # Modelo para raciocínio lógico
|
26 |
+
"facebook/opt-1.3b", # Modelo de geração de texto
|
27 |
+
"EleutherAI/gpt-neo-1.3B", # Versão open-source do GPT-3
|
28 |
+
"bigscience/bloom-1b7", # Modelo multilíngue
|
29 |
+
"RWKV/rwkv-4-169m-pile", # Modelo eficiente em RAM
|
30 |
+
"gpt2-medium", # Clássico modelo de GPT-2
|
31 |
+
"databricks/dolly-v2-3b", # Modelo para instruções
|
32 |
+
"mosaicml/mpt-7b-instruct" # Modelo para instruções
|
33 |
]
|
34 |
+
|
35 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
36 |
|
37 |
+
# Função para carregar documentos PDF
|
38 |
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
39 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
40 |
pages = []
|
|
|
44 |
chunk_size=chunk_size,
|
45 |
chunk_overlap=chunk_overlap
|
46 |
)
|
47 |
+
return text_splitter.split_documents(pages)
|
|
|
48 |
|
49 |
+
# Função para criar banco de dados vetorial
|
50 |
def create_db(splits, collection_name):
|
51 |
embedding = HuggingFaceEmbeddings()
|
52 |
+
return Chroma.from_documents(
|
|
|
53 |
documents=splits,
|
54 |
embedding=embedding,
|
55 |
+
client=chromadb.EphemeralClient(),
|
56 |
+
collection_name=collection_name
|
57 |
)
|
|
|
58 |
|
59 |
+
# Função para inicializar o modelo LLM
|
60 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
61 |
+
progress(0.1, desc="Carregando tokenizer...")
|
62 |
|
|
|
63 |
tokenizer = AutoTokenizer.from_pretrained(llm_model)
|
64 |
+
|
65 |
+
progress(0.4, desc="Inicializando pipeline...")
|
66 |
+
pipeline_obj = pipeline(
|
67 |
"text-generation",
|
68 |
model=llm_model,
|
69 |
tokenizer=tokenizer,
|
|
|
72 |
max_new_tokens=max_tokens,
|
73 |
do_sample=True,
|
74 |
top_k=top_k,
|
75 |
+
temperature=temperature
|
76 |
)
|
77 |
+
|
78 |
+
llm = HuggingFacePipeline(pipeline=pipeline_obj)
|
79 |
+
|
80 |
+
progress(0.7, desc="Configurando memória...")
|
81 |
memory = ConversationBufferMemory(
|
82 |
memory_key="chat_history",
|
|
|
83 |
return_messages=True
|
84 |
)
|
85 |
+
|
86 |
+
progress(0.8, desc="Criando cadeia...")
|
87 |
+
return ConversationalRetrievalChain.from_llm(
|
88 |
+
llm=llm,
|
89 |
+
retriever=vector_db.as_retriever(),
|
|
|
|
|
90 |
memory=memory,
|
91 |
+
chain_type="stuff",
|
92 |
+
return_source_documents=True
|
93 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
+
# Interface Gradio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
def demo():
|
97 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
98 |
vector_db = gr.State()
|
99 |
qa_chain = gr.State()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
+
gr.Markdown("## 🤖 Chatbot para PDFs com Modelos Gratuitos")
|
|
|
|
|
102 |
|
103 |
+
with gr.Tab("📤 Upload PDF"):
|
104 |
+
pdf_input = gr.Files(label="Selecione seus PDFs", file_types=[".pdf"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
+
with gr.Tab("⚙️ Processamento"):
|
107 |
+
chunk_size = gr.Slider(100, 1000, value=500, label="Tamanho dos Chunks")
|
108 |
+
chunk_overlap = gr.Slider(0, 200, value=50, label="Sobreposição")
|
109 |
+
process_btn = gr.Button("Processar PDFs")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
+
with gr.Tab("🧠 Modelo"):
|
112 |
+
model_selector = gr.Dropdown(list_llm_simple, label="Selecione o Modelo", value=list_llm_simple[0])
|
113 |
+
temperature = gr.Slider(0, 1, value=0.7, label="Criatividade")
|
114 |
+
load_model_btn = gr.Button("Carregar Modelo")
|
115 |
+
|
116 |
+
with gr.Tab("💬 Chat"):
|
117 |
+
chatbot = gr.Chatbot(height=400)
|
118 |
+
msg = gr.Textbox(label="Sua mensagem")
|
119 |
+
clear_btn = gr.ClearButton([msg, chatbot])
|
120 |
+
|
121 |
+
# Eventos
|
122 |
+
process_btn.click(
|
123 |
+
lambda files, cs, co: create_db(load_doc([f.name for f in files], cs, co), "docs"),
|
124 |
+
inputs=[pdf_input, chunk_size, chunk_overlap],
|
125 |
+
outputs=vector_db
|
126 |
+
)
|
127 |
+
|
128 |
+
load_model_btn.click(
|
129 |
+
lambda model, temp: initialize_llmchain(list_llm[list_llm_simple.index(model)], temp, 512, 3, vector_db.value),
|
130 |
+
inputs=[model_selector, temperature],
|
131 |
+
outputs=qa_chain
|
132 |
+
)
|
133 |
+
|
134 |
+
def respond(message, chat_history):
|
135 |
+
result = qa_chain.value({"question": message, "chat_history": chat_history})
|
136 |
+
response = result["answer"]
|
137 |
+
sources = "\n".join([f"📄 Página {doc.metadata['page']+1}: {doc.page_content[:50]}..."
|
138 |
+
for doc in result["source_documents"][:2]])
|
139 |
+
return f"{response}\n\n🔍 Fontes:\n{sources}"
|
140 |
+
|
141 |
+
msg.submit(respond, [msg, chatbot], chatbot)
|
142 |
+
|
143 |
+
demo.launch()
|
144 |
|
145 |
if __name__ == "__main__":
|
146 |
demo()
|