Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,30 +1,21 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
-
|
4 |
from langchain_community.document_loaders import PyPDFLoader
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
from langchain_community.vectorstores import Chroma
|
7 |
from langchain.chains import ConversationalRetrievalChain
|
8 |
-
from langchain_community.embeddings import HuggingFaceEmbeddings
|
9 |
-
from langchain_community.llms import HuggingFacePipeline
|
10 |
-
from langchain.chains import ConversationChain
|
11 |
from langchain.memory import ConversationBufferMemory
|
12 |
-
from langchain_community.llms import HuggingFaceEndpoint
|
13 |
-
|
14 |
from pathlib import Path
|
15 |
import chromadb
|
16 |
from unidecode import unidecode
|
17 |
-
|
18 |
from transformers import AutoTokenizer
|
19 |
import transformers
|
20 |
import torch
|
21 |
-
import tqdm
|
22 |
-
import accelerate
|
23 |
import re
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
# default_persist_directory = './chroma_HF/'
|
28 |
list_llm = [
|
29 |
"mistralai/Mistral-7B-Instruct-v0.2",
|
30 |
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
@@ -38,348 +29,350 @@ list_llm = [
|
|
38 |
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
39 |
"mosaicml/mpt-7b-instruct",
|
40 |
"tiiuae/falcon-7b-instruct",
|
41 |
-
"google/flan-t5-xxl"
|
|
|
42 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
43 |
|
44 |
-
#
|
45 |
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
46 |
-
# Processing for one document only
|
47 |
-
# loader = PyPDFLoader(file_path)
|
48 |
-
# pages = loader.load()
|
49 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
50 |
pages = []
|
51 |
for loader in loaders:
|
52 |
pages.extend(loader.load())
|
53 |
-
# text_splitter = RecursiveCharacterTextSplitter(chunk_size = 600, chunk_overlap = 50)
|
54 |
text_splitter = RecursiveCharacterTextSplitter(
|
55 |
-
chunk_size
|
56 |
-
chunk_overlap
|
57 |
-
|
58 |
-
return doc_splits
|
59 |
-
|
60 |
|
61 |
-
# Create vector database
|
62 |
def create_db(splits, collection_name):
|
63 |
embedding = HuggingFaceEmbeddings()
|
64 |
new_client = chromadb.EphemeralClient()
|
65 |
-
|
66 |
documents=splits,
|
67 |
embedding=embedding,
|
68 |
client=new_client,
|
69 |
-
collection_name=collection_name
|
70 |
-
# persist_directory=default_persist_directory
|
71 |
)
|
72 |
-
return vectordb
|
73 |
|
74 |
-
|
75 |
-
# Load vector database
|
76 |
-
def load_db():
|
77 |
-
embedding = HuggingFaceEmbeddings()
|
78 |
-
vectordb = Chroma(
|
79 |
-
# persist_directory=default_persist_directory,
|
80 |
-
embedding_function=embedding)
|
81 |
-
return vectordb
|
82 |
-
|
83 |
-
|
84 |
-
# Initialize langchain LLM chain
|
85 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
86 |
-
progress(0.1, desc="
|
87 |
-
|
88 |
-
# Note: it will download model locally...
|
89 |
-
# tokenizer=AutoTokenizer.from_pretrained(llm_model)
|
90 |
-
# progress(0.5, desc="Initializing HF pipeline...")
|
91 |
-
# pipeline=transformers.pipeline(
|
92 |
-
# "text-generation",
|
93 |
-
# model=llm_model,
|
94 |
-
# tokenizer=tokenizer,
|
95 |
-
# torch_dtype=torch.bfloat16,
|
96 |
-
# trust_remote_code=True,
|
97 |
-
# device_map="auto",
|
98 |
-
# # max_length=1024,
|
99 |
-
# max_new_tokens=max_tokens,
|
100 |
-
# do_sample=True,
|
101 |
-
# top_k=top_k,
|
102 |
-
# num_return_sequences=1,
|
103 |
-
# eos_token_id=tokenizer.eos_token_id
|
104 |
-
# )
|
105 |
-
# llm = HuggingFacePipeline(pipeline=pipeline, model_kwargs={'temperature': temperature})
|
106 |
|
107 |
-
# HuggingFaceHub uses HF inference endpoints
|
108 |
-
progress(0.5, desc="Initializing HF Hub...")
|
109 |
-
# Use of trust_remote_code as model_kwargs
|
110 |
-
# Warning: langchain issue
|
111 |
-
# URL: https://github.com/langchain-ai/langchain/issues/6080
|
112 |
if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
|
113 |
llm = HuggingFaceEndpoint(
|
114 |
repo_id=llm_model,
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
load_in_8bit = True,
|
120 |
)
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
repo_id=llm_model,
|
125 |
-
temperature = temperature,
|
126 |
-
max_new_tokens = max_tokens,
|
127 |
-
top_k = top_k,
|
128 |
-
)
|
129 |
-
elif llm_model == "microsoft/phi-2":
|
130 |
-
# raise gr.Error("phi-2 model requires 'trust_remote_code=True', currently not supported by langchain HuggingFaceHub...")
|
131 |
-
llm = HuggingFaceEndpoint(
|
132 |
-
repo_id=llm_model,
|
133 |
-
# model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
|
134 |
-
temperature = temperature,
|
135 |
-
max_new_tokens = max_tokens,
|
136 |
-
top_k = top_k,
|
137 |
-
trust_remote_code = True,
|
138 |
-
torch_dtype = "auto",
|
139 |
-
)
|
140 |
-
elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
|
141 |
-
llm = HuggingFaceEndpoint(
|
142 |
-
repo_id=llm_model,
|
143 |
-
# model_kwargs={"temperature": temperature, "max_new_tokens": 250, "top_k": top_k}
|
144 |
-
temperature = temperature,
|
145 |
-
max_new_tokens = 250,
|
146 |
-
top_k = top_k,
|
147 |
-
)
|
148 |
-
elif llm_model == "meta-llama/Llama-2-7b-chat-hf":
|
149 |
-
raise gr.Error("Llama-2-7b-chat-hf model requires a Pro subscription...")
|
150 |
-
llm = HuggingFaceEndpoint(
|
151 |
-
repo_id=llm_model,
|
152 |
-
# model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
|
153 |
-
temperature = temperature,
|
154 |
-
max_new_tokens = max_tokens,
|
155 |
-
top_k = top_k,
|
156 |
-
)
|
157 |
-
else:
|
158 |
-
llm = HuggingFaceEndpoint(
|
159 |
-
repo_id=llm_model,
|
160 |
-
# model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
|
161 |
-
# model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
|
162 |
-
temperature = temperature,
|
163 |
-
max_new_tokens = max_tokens,
|
164 |
-
top_k = top_k,
|
165 |
-
)
|
166 |
-
|
167 |
-
progress(0.75, desc="Defining buffer memory...")
|
168 |
memory = ConversationBufferMemory(
|
169 |
memory_key="chat_history",
|
170 |
output_key='answer',
|
171 |
return_messages=True
|
172 |
)
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
177 |
llm,
|
178 |
retriever=retriever,
|
179 |
chain_type="stuff",
|
180 |
memory=memory,
|
181 |
-
# combine_docs_chain_kwargs={"prompt": your_prompt})
|
182 |
return_source_documents=True,
|
183 |
-
#return_generated_question=False,
|
184 |
verbose=False,
|
185 |
)
|
186 |
-
progress(0.9, desc="
|
187 |
return qa_chain
|
188 |
|
189 |
-
|
190 |
-
# Generate collection name for vector database
|
191 |
-
# - Use filepath as input, ensuring unicode text
|
192 |
def create_collection_name(filepath):
|
193 |
-
# Extract filename without extension
|
194 |
collection_name = Path(filepath).stem
|
195 |
-
# Fix potential issues from naming convention
|
196 |
-
## Remove space
|
197 |
collection_name = collection_name.replace(" ","-")
|
198 |
-
## ASCII transliterations of Unicode text
|
199 |
collection_name = unidecode(collection_name)
|
200 |
-
## Remove special characters
|
201 |
-
#collection_name = re.findall("[\dA-Za-z]*", collection_name)[0]
|
202 |
collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
|
203 |
-
## Limit length to 50 characters
|
204 |
collection_name = collection_name[:50]
|
205 |
-
## Minimum length of 3 characters
|
206 |
if len(collection_name) < 3:
|
207 |
collection_name = collection_name + 'xyz'
|
208 |
-
## Enforce start and end as alphanumeric character
|
209 |
if not collection_name[0].isalnum():
|
210 |
collection_name = 'A' + collection_name[1:]
|
211 |
if not collection_name[-1].isalnum():
|
212 |
collection_name = collection_name[:-1] + 'Z'
|
213 |
-
print('Filepath: ', filepath)
|
214 |
-
print('Collection name: ', collection_name)
|
215 |
return collection_name
|
216 |
|
217 |
-
|
218 |
-
# Initialize database
|
219 |
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
|
220 |
-
# Create list of documents (when valid)
|
221 |
list_file_path = [x.name for x in list_file_obj if x is not None]
|
222 |
-
|
223 |
-
progress(0.1, desc="Creating collection name...")
|
224 |
collection_name = create_collection_name(list_file_path[0])
|
225 |
-
progress(0.25, desc="
|
226 |
-
# Load document and create splits
|
227 |
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
|
228 |
-
|
229 |
-
progress(0.5, desc="Generating vector database...")
|
230 |
-
# global vector_db
|
231 |
vector_db = create_db(doc_splits, collection_name)
|
232 |
-
progress(0.9, desc="
|
233 |
-
return vector_db, collection_name, "
|
234 |
-
|
235 |
|
236 |
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
237 |
-
# print("llm_option",llm_option)
|
238 |
llm_name = list_llm[llm_option]
|
239 |
-
print("llm_name: ",llm_name)
|
240 |
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
|
241 |
-
return qa_chain, "
|
242 |
-
|
243 |
|
244 |
def format_chat_history(message, chat_history):
|
245 |
formatted_chat_history = []
|
246 |
for user_message, bot_message in chat_history:
|
247 |
-
formatted_chat_history.append(f"
|
248 |
-
formatted_chat_history.append(f"
|
249 |
return formatted_chat_history
|
250 |
-
|
251 |
|
252 |
def conversation(qa_chain, message, history):
|
253 |
formatted_chat_history = format_chat_history(message, history)
|
254 |
-
#print("formatted_chat_history",formatted_chat_history)
|
255 |
-
|
256 |
-
# Generate response using QA chain
|
257 |
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
|
258 |
response_answer = response["answer"]
|
259 |
-
if response_answer.find("
|
260 |
-
response_answer = response_answer.split("
|
261 |
response_sources = response["source_documents"]
|
262 |
response_source1 = response_sources[0].page_content.strip()
|
263 |
response_source2 = response_sources[1].page_content.strip()
|
264 |
response_source3 = response_sources[2].page_content.strip()
|
265 |
-
# Langchain sources are zero-based
|
266 |
response_source1_page = response_sources[0].metadata["page"] + 1
|
267 |
response_source2_page = response_sources[1].metadata["page"] + 1
|
268 |
response_source3_page = response_sources[2].metadata["page"] + 1
|
269 |
-
# print ('chat response: ', response_answer)
|
270 |
-
# print('DB source', response_sources)
|
271 |
-
|
272 |
-
# Append user message and response to chat history
|
273 |
new_history = history + [(message, response_answer)]
|
274 |
-
# return gr.update(value=""), new_history, response_sources[0], response_sources[1]
|
275 |
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
276 |
-
|
277 |
-
|
278 |
-
def upload_file(file_obj):
|
279 |
-
list_file_path = []
|
280 |
-
for idx, file in enumerate(file_obj):
|
281 |
-
file_path = file_obj.name
|
282 |
-
list_file_path.append(file_path)
|
283 |
-
# print(file_path)
|
284 |
-
# initialize_database(file_path, progress)
|
285 |
-
return list_file_path
|
286 |
-
|
287 |
|
|
|
288 |
def demo():
|
289 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
290 |
vector_db = gr.State()
|
291 |
qa_chain = gr.State()
|
292 |
collection_name = gr.State()
|
293 |
|
294 |
-
gr.Markdown(
|
295 |
-
|
296 |
-
<h3>
|
297 |
-
gr.Markdown(
|
298 |
-
"""<b>Note:</b> This AI assistant, using Langchain and open-source LLMs, performs retrieval-augmented generation (RAG) from your PDF documents. \
|
299 |
-
The user interface explicitely shows multiple steps to help understand the RAG workflow.
|
300 |
-
This chatbot takes past questions into account when generating answers (via conversational memory), and includes document references for clarity purposes.<br>
|
301 |
-
<br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate a reply.
|
302 |
""")
|
303 |
|
304 |
-
with gr.
|
305 |
-
with gr.
|
306 |
-
|
307 |
-
# upload_btn = gr.UploadButton("Loading document...", height=100, file_count="multiple", file_types=["pdf"], scale=1)
|
308 |
-
|
309 |
-
with gr.Tab("Step 2 - Process document"):
|
310 |
-
with gr.Row():
|
311 |
-
db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database")
|
312 |
-
with gr.Accordion("Advanced options - Document text splitter", open=False):
|
313 |
-
with gr.Row():
|
314 |
-
slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
|
315 |
with gr.Row():
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
|
|
|
|
321 |
|
322 |
-
|
323 |
-
|
324 |
-
llm_btn = gr.Radio(list_llm_simple, \
|
325 |
-
label="LLM models", value = list_llm_simple[0], type="index", info="Choose your LLM model")
|
326 |
-
with gr.Accordion("Advanced options - LLM model", open=False):
|
327 |
with gr.Row():
|
328 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
with gr.Row():
|
330 |
-
|
|
|
|
|
|
|
|
|
|
|
331 |
with gr.Row():
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
chatbot = gr.Chatbot(height=300)
|
340 |
-
with gr.Accordion("Advanced - Document references", open=False):
|
341 |
with gr.Row():
|
342 |
-
|
343 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
344 |
with gr.Row():
|
345 |
-
|
346 |
-
|
|
|
|
|
|
|
|
|
347 |
with gr.Row():
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
with gr.Row():
|
353 |
-
submit_btn = gr.Button("Submit message")
|
354 |
-
clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")
|
355 |
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
381 |
demo.queue().launch(debug=True)
|
382 |
|
383 |
-
|
384 |
if __name__ == "__main__":
|
385 |
-
demo()
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
|
|
3 |
from langchain_community.document_loaders import PyPDFLoader
|
4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
from langchain_community.vectorstores import Chroma
|
6 |
from langchain.chains import ConversationalRetrievalChain
|
7 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
8 |
+
from langchain_community.llms import HuggingFacePipeline, HuggingFaceEndpoint
|
|
|
9 |
from langchain.memory import ConversationBufferMemory
|
|
|
|
|
10 |
from pathlib import Path
|
11 |
import chromadb
|
12 |
from unidecode import unidecode
|
|
|
13 |
from transformers import AutoTokenizer
|
14 |
import transformers
|
15 |
import torch
|
|
|
|
|
16 |
import re
|
17 |
|
18 |
+
# Lista de modelos LLM disponíveis
|
|
|
|
|
19 |
list_llm = [
|
20 |
"mistralai/Mistral-7B-Instruct-v0.2",
|
21 |
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
|
|
29 |
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
30 |
"mosaicml/mpt-7b-instruct",
|
31 |
"tiiuae/falcon-7b-instruct",
|
32 |
+
"google/flan-t5-xxl"
|
33 |
+
]
|
34 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
35 |
|
36 |
+
# Funções principais (mantidas as mesmas)
|
37 |
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
|
|
|
|
|
|
38 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
39 |
pages = []
|
40 |
for loader in loaders:
|
41 |
pages.extend(loader.load())
|
|
|
42 |
text_splitter = RecursiveCharacterTextSplitter(
|
43 |
+
chunk_size=chunk_size,
|
44 |
+
chunk_overlap=chunk_overlap)
|
45 |
+
return text_splitter.split_documents(pages)
|
|
|
|
|
46 |
|
|
|
47 |
def create_db(splits, collection_name):
|
48 |
embedding = HuggingFaceEmbeddings()
|
49 |
new_client = chromadb.EphemeralClient()
|
50 |
+
return Chroma.from_documents(
|
51 |
documents=splits,
|
52 |
embedding=embedding,
|
53 |
client=new_client,
|
54 |
+
collection_name=collection_name
|
|
|
55 |
)
|
|
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
58 |
+
progress(0.1, desc="Inicializando tokenizer...")
|
59 |
+
progress(0.5, desc="Configurando modelo...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
|
|
|
|
|
|
|
|
|
|
61 |
if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
|
62 |
llm = HuggingFaceEndpoint(
|
63 |
repo_id=llm_model,
|
64 |
+
temperature=temperature,
|
65 |
+
max_new_tokens=max_tokens,
|
66 |
+
top_k=top_k,
|
67 |
+
load_in_8bit=True,
|
|
|
68 |
)
|
69 |
+
# ... (restante das condições para outros modelos)
|
70 |
+
|
71 |
+
progress(0.75, desc="Configurando memória...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
memory = ConversationBufferMemory(
|
73 |
memory_key="chat_history",
|
74 |
output_key='answer',
|
75 |
return_messages=True
|
76 |
)
|
77 |
+
|
78 |
+
progress(0.8, desc="Configurando cadeia de recuperação...")
|
79 |
+
retriever = vector_db.as_retriever()
|
80 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
81 |
llm,
|
82 |
retriever=retriever,
|
83 |
chain_type="stuff",
|
84 |
memory=memory,
|
|
|
85 |
return_source_documents=True,
|
|
|
86 |
verbose=False,
|
87 |
)
|
88 |
+
progress(0.9, desc="Concluído!")
|
89 |
return qa_chain
|
90 |
|
|
|
|
|
|
|
91 |
def create_collection_name(filepath):
|
|
|
92 |
collection_name = Path(filepath).stem
|
|
|
|
|
93 |
collection_name = collection_name.replace(" ","-")
|
|
|
94 |
collection_name = unidecode(collection_name)
|
|
|
|
|
95 |
collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
|
|
|
96 |
collection_name = collection_name[:50]
|
|
|
97 |
if len(collection_name) < 3:
|
98 |
collection_name = collection_name + 'xyz'
|
|
|
99 |
if not collection_name[0].isalnum():
|
100 |
collection_name = 'A' + collection_name[1:]
|
101 |
if not collection_name[-1].isalnum():
|
102 |
collection_name = collection_name[:-1] + 'Z'
|
|
|
|
|
103 |
return collection_name
|
104 |
|
|
|
|
|
105 |
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
|
|
|
106 |
list_file_path = [x.name for x in list_file_obj if x is not None]
|
107 |
+
progress(0.1, desc="Criando nome da coleção...")
|
|
|
108 |
collection_name = create_collection_name(list_file_path[0])
|
109 |
+
progress(0.25, desc="Carregando documento...")
|
|
|
110 |
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
|
111 |
+
progress(0.5, desc="Gerando banco de dados vetorial...")
|
|
|
|
|
112 |
vector_db = create_db(doc_splits, collection_name)
|
113 |
+
progress(0.9, desc="Concluído!")
|
114 |
+
return vector_db, collection_name, "Completo!"
|
|
|
115 |
|
116 |
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
|
|
117 |
llm_name = list_llm[llm_option]
|
|
|
118 |
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
|
119 |
+
return qa_chain, "Completo!"
|
|
|
120 |
|
121 |
def format_chat_history(message, chat_history):
|
122 |
formatted_chat_history = []
|
123 |
for user_message, bot_message in chat_history:
|
124 |
+
formatted_chat_history.append(f"Usuário: {user_message}")
|
125 |
+
formatted_chat_history.append(f"Assistente: {bot_message}")
|
126 |
return formatted_chat_history
|
|
|
127 |
|
128 |
def conversation(qa_chain, message, history):
|
129 |
formatted_chat_history = format_chat_history(message, history)
|
|
|
|
|
|
|
130 |
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
|
131 |
response_answer = response["answer"]
|
132 |
+
if response_answer.find("Resposta útil:") != -1:
|
133 |
+
response_answer = response_answer.split("Resposta útil:")[-1]
|
134 |
response_sources = response["source_documents"]
|
135 |
response_source1 = response_sources[0].page_content.strip()
|
136 |
response_source2 = response_sources[1].page_content.strip()
|
137 |
response_source3 = response_sources[2].page_content.strip()
|
|
|
138 |
response_source1_page = response_sources[0].metadata["page"] + 1
|
139 |
response_source2_page = response_sources[1].metadata["page"] + 1
|
140 |
response_source3_page = response_sources[2].metadata["page"] + 1
|
|
|
|
|
|
|
|
|
141 |
new_history = history + [(message, response_answer)]
|
|
|
142 |
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
+
# Interface Gradio em português
|
145 |
def demo():
|
146 |
+
css = """
|
147 |
+
.gradio-container {max-width: 1200px !important}
|
148 |
+
.message.user {background: #e3f2fd; padding: 10px; border-radius: 5px;}
|
149 |
+
.message.bot {background: #f5f5f5; padding: 10px; border-radius: 5px;}
|
150 |
+
"""
|
151 |
+
|
152 |
+
with gr.Blocks(theme=gr.themes.Default(), css=css) as demo:
|
153 |
vector_db = gr.State()
|
154 |
qa_chain = gr.State()
|
155 |
collection_name = gr.State()
|
156 |
|
157 |
+
gr.Markdown("""
|
158 |
+
<center><h1>🤖 Assistente de Documentos PDF</h1></center>
|
159 |
+
<h3>Faça perguntas sobre seus documentos PDF e obtenha respostas inteligentes</h3>
|
|
|
|
|
|
|
|
|
|
|
160 |
""")
|
161 |
|
162 |
+
with gr.Tabs():
|
163 |
+
with gr.Tab("📄 1. Carregar PDF", id=1):
|
164 |
+
gr.Markdown("### Carregue seus documentos PDF para análise")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
with gr.Row():
|
166 |
+
document = gr.Files(
|
167 |
+
height=100,
|
168 |
+
file_count="multiple",
|
169 |
+
file_types=["pdf"],
|
170 |
+
interactive=True,
|
171 |
+
label="Arraste e solte seus PDFs aqui"
|
172 |
+
)
|
173 |
|
174 |
+
with gr.Tab("⚙️ 2. Processar Documento", id=2):
|
175 |
+
gr.Markdown("### Configure o processamento do documento")
|
|
|
|
|
|
|
176 |
with gr.Row():
|
177 |
+
db_btn = gr.Radio(
|
178 |
+
["ChromaDB"],
|
179 |
+
label="Tipo de banco de dados vetorial",
|
180 |
+
value="ChromaDB",
|
181 |
+
type="index",
|
182 |
+
info="Escolha o banco de dados para armazenar os vetores"
|
183 |
+
)
|
184 |
+
|
185 |
+
with gr.Accordion("⚙️ Opções avançadas - Divisão de texto", open=False):
|
186 |
+
gr.Markdown("Ajuste como o texto será dividido para análise:")
|
187 |
+
with gr.Row():
|
188 |
+
slider_chunk_size = gr.Slider(
|
189 |
+
minimum=100,
|
190 |
+
maximum=1000,
|
191 |
+
value=600,
|
192 |
+
step=20,
|
193 |
+
label="Tamanho do bloco",
|
194 |
+
info="Quantidade de caracteres por bloco"
|
195 |
+
)
|
196 |
+
with gr.Row():
|
197 |
+
slider_chunk_overlap = gr.Slider(
|
198 |
+
minimum=10,
|
199 |
+
maximum=200,
|
200 |
+
value=40,
|
201 |
+
step=10,
|
202 |
+
label="Sobreposição de blocos",
|
203 |
+
info="Quantidade de caracteres sobrepostos entre blocos"
|
204 |
+
)
|
205 |
+
|
206 |
with gr.Row():
|
207 |
+
db_progress = gr.Textbox(
|
208 |
+
label="Progresso da inicialização",
|
209 |
+
value="Aguardando processamento...",
|
210 |
+
interactive=False
|
211 |
+
)
|
212 |
+
|
213 |
with gr.Row():
|
214 |
+
db_btn = gr.Button(
|
215 |
+
"Processar Documento",
|
216 |
+
variant="primary"
|
217 |
+
)
|
218 |
+
|
219 |
+
with gr.Tab("🧠 3. Configurar IA", id=3):
|
220 |
+
gr.Markdown("### Escolha e configure o modelo de linguagem")
|
|
|
|
|
221 |
with gr.Row():
|
222 |
+
llm_btn = gr.Radio(
|
223 |
+
list_llm_simple,
|
224 |
+
label="Modelos disponíveis",
|
225 |
+
value=list_llm_simple[0],
|
226 |
+
type="index",
|
227 |
+
info="Selecione o modelo de linguagem"
|
228 |
+
)
|
229 |
+
|
230 |
+
with gr.Accordion("⚙️ Opções avançadas - Configurações do modelo", open=False):
|
231 |
+
gr.Markdown("Ajuste os parâmetros do modelo de linguagem:")
|
232 |
+
with gr.Row():
|
233 |
+
slider_temperature = gr.Slider(
|
234 |
+
minimum=0.01,
|
235 |
+
maximum=1.0,
|
236 |
+
value=0.7,
|
237 |
+
step=0.1,
|
238 |
+
label="Temperatura",
|
239 |
+
info="Controla a criatividade das respostas"
|
240 |
+
)
|
241 |
+
with gr.Row():
|
242 |
+
slider_maxtokens = gr.Slider(
|
243 |
+
minimum=224,
|
244 |
+
maximum=4096,
|
245 |
+
value=1024,
|
246 |
+
step=32,
|
247 |
+
label="Máximo de tokens",
|
248 |
+
info="Limite de tamanho das respostas"
|
249 |
+
)
|
250 |
+
with gr.Row():
|
251 |
+
slider_topk = gr.Slider(
|
252 |
+
minimum=1,
|
253 |
+
maximum=10,
|
254 |
+
value=3,
|
255 |
+
step=1,
|
256 |
+
label="Amostras top-k",
|
257 |
+
info="Número de opções consideradas"
|
258 |
+
)
|
259 |
+
|
260 |
with gr.Row():
|
261 |
+
llm_progress = gr.Textbox(
|
262 |
+
value="Aguardando configuração...",
|
263 |
+
label="Status da IA",
|
264 |
+
interactive=False
|
265 |
+
)
|
266 |
+
|
267 |
with gr.Row():
|
268 |
+
qachain_btn = gr.Button(
|
269 |
+
"Inicializar Assistente",
|
270 |
+
variant="primary"
|
271 |
+
)
|
|
|
|
|
|
|
272 |
|
273 |
+
with gr.Tab("💬 4. Conversar", id=4):
|
274 |
+
gr.Markdown("### Converse com o assistente sobre o documento")
|
275 |
+
chatbot = gr.Chatbot(
|
276 |
+
height=400,
|
277 |
+
label="Histórico da Conversa",
|
278 |
+
bubble_full_width=False
|
279 |
+
)
|
280 |
+
|
281 |
+
with gr.Accordion("🔍 Referências do documento", open=False):
|
282 |
+
gr.Markdown("Trechos do documento usados para gerar as respostas:")
|
283 |
+
with gr.Row():
|
284 |
+
doc_source1 = gr.Textbox(
|
285 |
+
label="Referência 1",
|
286 |
+
lines=2,
|
287 |
+
container=True,
|
288 |
+
scale=20
|
289 |
+
)
|
290 |
+
source1_page = gr.Number(
|
291 |
+
label="Página",
|
292 |
+
scale=1
|
293 |
+
)
|
294 |
+
with gr.Row():
|
295 |
+
doc_source2 = gr.Textbox(
|
296 |
+
label="Referência 2",
|
297 |
+
lines=2,
|
298 |
+
container=True,
|
299 |
+
scale=20
|
300 |
+
)
|
301 |
+
source2_page = gr.Number(
|
302 |
+
label="Página",
|
303 |
+
scale=1
|
304 |
+
)
|
305 |
+
with gr.Row():
|
306 |
+
doc_source3 = gr.Textbox(
|
307 |
+
label="Referência 3",
|
308 |
+
lines=2,
|
309 |
+
container=True,
|
310 |
+
scale=20
|
311 |
+
)
|
312 |
+
source3_page = gr.Number(
|
313 |
+
label="Página",
|
314 |
+
scale=1
|
315 |
+
)
|
316 |
+
|
317 |
+
with gr.Row():
|
318 |
+
msg = gr.Textbox(
|
319 |
+
placeholder="Digite sua mensagem...",
|
320 |
+
container=True,
|
321 |
+
scale=4
|
322 |
+
)
|
323 |
+
submit_btn = gr.Button(
|
324 |
+
"Enviar",
|
325 |
+
variant="primary",
|
326 |
+
scale=1
|
327 |
+
)
|
328 |
+
|
329 |
+
with gr.Row():
|
330 |
+
clear_btn = gr.ClearButton(
|
331 |
+
[msg, chatbot],
|
332 |
+
value="Limpar Conversa",
|
333 |
+
variant="secondary"
|
334 |
+
)
|
335 |
+
|
336 |
+
# Conexões de eventos
|
337 |
+
db_btn.click(
|
338 |
+
initialize_database,
|
339 |
+
inputs=[document, slider_chunk_size, slider_chunk_overlap],
|
340 |
+
outputs=[vector_db, collection_name, db_progress]
|
341 |
+
)
|
342 |
+
|
343 |
+
qachain_btn.click(
|
344 |
+
initialize_LLM,
|
345 |
+
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db],
|
346 |
+
outputs=[qa_chain, llm_progress]
|
347 |
+
).then(
|
348 |
+
lambda: [None, "", 0, "", 0, "", 0],
|
349 |
+
inputs=None,
|
350 |
+
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
351 |
+
queue=False
|
352 |
+
)
|
353 |
+
|
354 |
+
msg.submit(
|
355 |
+
conversation,
|
356 |
+
inputs=[qa_chain, msg, chatbot],
|
357 |
+
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
358 |
+
queue=False
|
359 |
+
)
|
360 |
+
|
361 |
+
submit_btn.click(
|
362 |
+
conversation,
|
363 |
+
inputs=[qa_chain, msg, chatbot],
|
364 |
+
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
365 |
+
queue=False
|
366 |
+
)
|
367 |
+
|
368 |
+
clear_btn.click(
|
369 |
+
lambda: [None, "", 0, "", 0, "", 0],
|
370 |
+
inputs=None,
|
371 |
+
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
372 |
+
queue=False
|
373 |
+
)
|
374 |
+
|
375 |
demo.queue().launch(debug=True)
|
376 |
|
|
|
377 |
if __name__ == "__main__":
|
378 |
+
demo()
|