Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,60 +1,53 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
-
|
4 |
from langchain_community.document_loaders import PyPDFLoader
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
from langchain_community.vectorstores import Chroma
|
7 |
from langchain.chains import ConversationalRetrievalChain
|
8 |
-
from langchain_community.embeddings import HuggingFaceEmbeddings
|
9 |
-
from langchain_community.llms import HuggingFacePipeline
|
10 |
-
from langchain.chains import ConversationChain
|
11 |
-
from langchain.memory import ConversationBufferMemory
|
12 |
from langchain_community.llms import HuggingFaceEndpoint
|
13 |
-
|
14 |
from pathlib import Path
|
15 |
import chromadb
|
16 |
from unidecode import unidecode
|
17 |
-
|
18 |
-
from transformers import AutoTokenizer
|
19 |
-
import transformers
|
20 |
-
import torch
|
21 |
-
import tqdm
|
22 |
-
import accelerate
|
23 |
import re
|
24 |
|
25 |
-
#
|
26 |
list_llm = [
|
27 |
-
"mistralai/Mistral-7B-Instruct-v0.2",
|
28 |
-
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
29 |
-
"mistralai/Mistral-7B-Instruct-v0.1",
|
30 |
-
"google/gemma-7b-it",
|
31 |
-
"google/gemma-2b-it",
|
32 |
-
"HuggingFaceH4/zephyr-7b-beta",
|
33 |
-
"HuggingFaceH4/zephyr-7b-gemma-v0.1",
|
34 |
-
"meta-llama/Llama-2-7b-chat-hf",
|
35 |
-
"microsoft/phi-2",
|
36 |
-
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
37 |
-
"mosaicml/mpt-7b-instruct",
|
38 |
-
"tiiuae/falcon-7b-instruct",
|
39 |
-
"google/flan-t5-xxl"
|
|
|
40 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
41 |
|
42 |
-
#
|
43 |
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
44 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
45 |
pages = []
|
46 |
for loader in loaders:
|
47 |
pages.extend(loader.load())
|
48 |
text_splitter = RecursiveCharacterTextSplitter(
|
49 |
-
chunk_size
|
50 |
-
chunk_overlap
|
|
|
51 |
doc_splits = text_splitter.split_documents(pages)
|
52 |
return doc_splits
|
53 |
|
54 |
-
#
|
55 |
def create_db(splits, collection_name):
|
56 |
embedding = HuggingFaceEmbeddings()
|
57 |
-
|
|
|
58 |
vectordb = Chroma.from_documents(
|
59 |
documents=splits,
|
60 |
embedding=embedding,
|
@@ -63,65 +56,58 @@ def create_db(splits, collection_name):
|
|
63 |
)
|
64 |
return vectordb
|
65 |
|
66 |
-
#
|
67 |
-
def load_db():
|
68 |
-
embedding = HuggingFaceEmbeddings()
|
69 |
-
vectordb = Chroma(
|
70 |
-
embedding_function=embedding)
|
71 |
-
return vectordb
|
72 |
-
|
73 |
-
# Initialize langchain LLM chain
|
74 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
75 |
progress(0.1, desc="Inicializando tokenizer da HF...")
|
76 |
progress(0.5, desc="Inicializando Hub da HF...")
|
77 |
if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
|
78 |
llm = HuggingFaceEndpoint(
|
79 |
-
repo_id=llm_model,
|
80 |
-
temperature
|
81 |
-
max_new_tokens
|
82 |
-
top_k
|
83 |
-
load_in_8bit
|
84 |
)
|
85 |
-
elif llm_model in ["HuggingFaceH4/zephyr-7b-gemma-v0.1","mosaicml/mpt-7b-instruct"]:
|
86 |
raise gr.Error("O modelo LLM é muito grande para ser carregado automaticamente no endpoint de inferência gratuito")
|
87 |
elif llm_model == "microsoft/phi-2":
|
88 |
llm = HuggingFaceEndpoint(
|
89 |
-
repo_id=llm_model,
|
90 |
-
temperature
|
91 |
-
max_new_tokens
|
92 |
-
top_k
|
93 |
-
trust_remote_code
|
94 |
-
torch_dtype
|
95 |
)
|
96 |
elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
|
97 |
llm = HuggingFaceEndpoint(
|
98 |
-
repo_id=llm_model,
|
99 |
-
temperature
|
100 |
-
max_new_tokens
|
101 |
-
top_k
|
102 |
)
|
103 |
elif llm_model == "meta-llama/Llama-2-7b-chat-hf":
|
104 |
raise gr.Error("O modelo Llama-2-7b-chat-hf requer uma assinatura Pro...")
|
105 |
else:
|
106 |
llm = HuggingFaceEndpoint(
|
107 |
-
repo_id=llm_model,
|
108 |
-
temperature
|
109 |
-
max_new_tokens
|
110 |
-
top_k
|
111 |
)
|
112 |
-
|
113 |
progress(0.75, desc="Definindo memória de buffer...")
|
114 |
memory = ConversationBufferMemory(
|
115 |
memory_key="chat_history",
|
116 |
output_key='answer',
|
117 |
return_messages=True
|
118 |
)
|
119 |
-
retriever=vector_db.as_retriever()
|
120 |
progress(0.8, desc="Definindo cadeia de recuperação...")
|
121 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
122 |
llm,
|
123 |
retriever=retriever,
|
124 |
-
chain_type="stuff",
|
125 |
memory=memory,
|
126 |
return_source_documents=True,
|
127 |
verbose=False,
|
@@ -129,10 +115,10 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
129 |
progress(0.9, desc="Concluído!")
|
130 |
return qa_chain
|
131 |
|
132 |
-
#
|
133 |
def create_collection_name(filepath):
|
134 |
collection_name = Path(filepath).stem
|
135 |
-
collection_name = collection_name.replace(" ","-")
|
136 |
collection_name = unidecode(collection_name)
|
137 |
collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
|
138 |
collection_name = collection_name[:50]
|
@@ -146,7 +132,7 @@ def create_collection_name(filepath):
|
|
146 |
print('Nome da coleção: ', collection_name)
|
147 |
return collection_name
|
148 |
|
149 |
-
#
|
150 |
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
|
151 |
list_file_path = [x.name for x in list_file_obj if x is not None]
|
152 |
progress(0.1, desc="Criando nome da coleção...")
|
@@ -158,12 +144,14 @@ def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Pr
|
|
158 |
progress(0.9, desc="Concluído!")
|
159 |
return vector_db, collection_name, "Completo!"
|
160 |
|
|
|
161 |
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
162 |
llm_name = list_llm[llm_option]
|
163 |
-
print("Nome do LLM: ",llm_name)
|
164 |
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
|
165 |
return qa_chain, "Completo!"
|
166 |
|
|
|
167 |
def format_chat_history(message, chat_history):
|
168 |
formatted_chat_history = []
|
169 |
for user_message, bot_message in chat_history:
|
@@ -171,6 +159,7 @@ def format_chat_history(message, chat_history):
|
|
171 |
formatted_chat_history.append(f"Assistente: {bot_message}")
|
172 |
return formatted_chat_history
|
173 |
|
|
|
174 |
def conversation(qa_chain, message, history):
|
175 |
formatted_chat_history = format_chat_history(message, history)
|
176 |
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
|
@@ -187,6 +176,7 @@ def conversation(qa_chain, message, history):
|
|
187 |
new_history = history + [(message, response_answer)]
|
188 |
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
189 |
|
|
|
190 |
def upload_file(file_obj):
|
191 |
list_file_path = []
|
192 |
for idx, file in enumerate(file_obj):
|
@@ -194,52 +184,54 @@ def upload_file(file_obj):
|
|
194 |
list_file_path.append(file_path)
|
195 |
return list_file_path
|
196 |
|
|
|
197 |
def demo():
|
198 |
with gr.Blocks(theme=gr.themes.Default(primary_hue="blue", secondary_hue="gray")) as demo:
|
199 |
vector_db = gr.State()
|
200 |
qa_chain = gr.State()
|
201 |
collection_name = gr.State()
|
202 |
-
|
203 |
gr.Markdown(
|
204 |
-
|
205 |
-
|
|
|
206 |
gr.Markdown(
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
|
|
213 |
with gr.Tab("Passo 1 - Carregar PDF"):
|
214 |
with gr.Row():
|
215 |
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Carregue seus documentos PDF (único ou múltiplos)")
|
216 |
-
|
217 |
with gr.Tab("Passo 2 - Processar documento"):
|
218 |
with gr.Row():
|
219 |
-
db_btn = gr.Radio(["ChromaDB"], label="Tipo de banco de dados vetorial", value
|
220 |
with gr.Accordion("Opções avançadas - Divisor de texto do documento", open=False):
|
221 |
with gr.Row():
|
222 |
-
slider_chunk_size = gr.Slider(minimum
|
223 |
with gr.Row():
|
224 |
-
slider_chunk_overlap = gr.Slider(minimum
|
225 |
with gr.Row():
|
226 |
db_progress = gr.Textbox(label="Inicialização do banco de dados vetorial", value="Nenhum")
|
227 |
with gr.Row():
|
228 |
db_btn = gr.Button("Gerar banco de dados vetorial")
|
229 |
-
|
230 |
with gr.Tab("Passo 3 - Inicializar cadeia de QA"):
|
231 |
with gr.Row():
|
232 |
-
llm_btn = gr.Radio(list_llm_simple,
|
233 |
-
label="Modelos LLM", value = list_llm_simple[0], type="index", info="Escolha seu modelo LLM")
|
234 |
with gr.Accordion("Opções avançadas - Modelo LLM", open=False):
|
235 |
with gr.Row():
|
236 |
-
slider_temperature = gr.Slider(minimum
|
237 |
with gr.Row():
|
238 |
-
slider_maxtokens = gr.Slider(minimum
|
239 |
with gr.Row():
|
240 |
-
slider_topk = gr.Slider(minimum
|
241 |
with gr.Row():
|
242 |
-
llm_progress = gr.Textbox(value="Nenhum",label="Inicialização da cadeia de QA")
|
243 |
with gr.Row():
|
244 |
qachain_btn = gr.Button("Inicializar cadeia de Perguntas e Respostas")
|
245 |
|
@@ -260,31 +252,17 @@ def demo():
|
|
260 |
with gr.Row():
|
261 |
submit_btn = gr.Button("Enviar mensagem")
|
262 |
clear_btn = gr.ClearButton([msg, chatbot], value="Limpar conversa")
|
263 |
-
|
264 |
-
# Preprocessing events
|
265 |
-
db_btn.click(initialize_database, \
|
266 |
-
inputs=[document, slider_chunk_size, slider_chunk_overlap], \
|
267 |
-
outputs=[vector_db, collection_name, db_progress])
|
268 |
-
qachain_btn.click(initialize_LLM, \
|
269 |
-
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
|
270 |
-
outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \
|
271 |
-
inputs=None, \
|
272 |
-
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
273 |
-
queue=False)
|
274 |
|
275 |
-
#
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
inputs=None, \
|
286 |
-
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
287 |
-
queue=False)
|
288 |
demo.queue().launch(debug=True)
|
289 |
|
290 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
|
|
3 |
from langchain_community.document_loaders import PyPDFLoader
|
4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
from langchain_community.vectorstores import Chroma
|
6 |
from langchain.chains import ConversationalRetrievalChain
|
7 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
|
|
|
|
|
8 |
from langchain_community.llms import HuggingFaceEndpoint
|
9 |
+
from langchain.memory import ConversationBufferMemory
|
10 |
from pathlib import Path
|
11 |
import chromadb
|
12 |
from unidecode import unidecode
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
import re
|
14 |
|
15 |
+
# Lista de modelos LLM disponíveis
|
16 |
list_llm = [
|
17 |
+
"mistralai/Mistral-7B-Instruct-v0.2",
|
18 |
+
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
19 |
+
"mistralai/Mistral-7B-Instruct-v0.1",
|
20 |
+
"google/gemma-7b-it",
|
21 |
+
"google/gemma-2b-it",
|
22 |
+
"HuggingFaceH4/zephyr-7b-beta",
|
23 |
+
"HuggingFaceH4/zephyr-7b-gemma-v0.1",
|
24 |
+
"meta-llama/Llama-2-7b-chat-hf",
|
25 |
+
"microsoft/phi-2",
|
26 |
+
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
27 |
+
"mosaicml/mpt-7b-instruct",
|
28 |
+
"tiiuae/falcon-7b-instruct",
|
29 |
+
"google/flan-t5-xxl"
|
30 |
+
]
|
31 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
32 |
|
33 |
+
# Função para carregar documentos PDF e dividir em chunks
|
34 |
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
35 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
36 |
pages = []
|
37 |
for loader in loaders:
|
38 |
pages.extend(loader.load())
|
39 |
text_splitter = RecursiveCharacterTextSplitter(
|
40 |
+
chunk_size=chunk_size,
|
41 |
+
chunk_overlap=chunk_overlap
|
42 |
+
)
|
43 |
doc_splits = text_splitter.split_documents(pages)
|
44 |
return doc_splits
|
45 |
|
46 |
+
# Função para criar o banco de dados vetorial
|
47 |
def create_db(splits, collection_name):
|
48 |
embedding = HuggingFaceEmbeddings()
|
49 |
+
# Usando PersistentClient para persistir o banco de dados
|
50 |
+
new_client = chromadb.PersistentClient(path="./chroma_db")
|
51 |
vectordb = Chroma.from_documents(
|
52 |
documents=splits,
|
53 |
embedding=embedding,
|
|
|
56 |
)
|
57 |
return vectordb
|
58 |
|
59 |
+
# Função para inicializar a cadeia de QA com o modelo LLM
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
61 |
progress(0.1, desc="Inicializando tokenizer da HF...")
|
62 |
progress(0.5, desc="Inicializando Hub da HF...")
|
63 |
if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
|
64 |
llm = HuggingFaceEndpoint(
|
65 |
+
repo_id=llm_model,
|
66 |
+
temperature=temperature,
|
67 |
+
max_new_tokens=max_tokens,
|
68 |
+
top_k=top_k,
|
69 |
+
load_in_8bit=True,
|
70 |
)
|
71 |
+
elif llm_model in ["HuggingFaceH4/zephyr-7b-gemma-v0.1", "mosaicml/mpt-7b-instruct"]:
|
72 |
raise gr.Error("O modelo LLM é muito grande para ser carregado automaticamente no endpoint de inferência gratuito")
|
73 |
elif llm_model == "microsoft/phi-2":
|
74 |
llm = HuggingFaceEndpoint(
|
75 |
+
repo_id=llm_model,
|
76 |
+
temperature=temperature,
|
77 |
+
max_new_tokens=max_tokens,
|
78 |
+
top_k=top_k,
|
79 |
+
trust_remote_code=True,
|
80 |
+
torch_dtype="auto",
|
81 |
)
|
82 |
elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
|
83 |
llm = HuggingFaceEndpoint(
|
84 |
+
repo_id=llm_model,
|
85 |
+
temperature=temperature,
|
86 |
+
max_new_tokens=250,
|
87 |
+
top_k=top_k,
|
88 |
)
|
89 |
elif llm_model == "meta-llama/Llama-2-7b-chat-hf":
|
90 |
raise gr.Error("O modelo Llama-2-7b-chat-hf requer uma assinatura Pro...")
|
91 |
else:
|
92 |
llm = HuggingFaceEndpoint(
|
93 |
+
repo_id=llm_model,
|
94 |
+
temperature=temperature,
|
95 |
+
max_new_tokens=max_tokens,
|
96 |
+
top_k=top_k,
|
97 |
)
|
98 |
+
|
99 |
progress(0.75, desc="Definindo memória de buffer...")
|
100 |
memory = ConversationBufferMemory(
|
101 |
memory_key="chat_history",
|
102 |
output_key='answer',
|
103 |
return_messages=True
|
104 |
)
|
105 |
+
retriever = vector_db.as_retriever()
|
106 |
progress(0.8, desc="Definindo cadeia de recuperação...")
|
107 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
108 |
llm,
|
109 |
retriever=retriever,
|
110 |
+
chain_type="stuff",
|
111 |
memory=memory,
|
112 |
return_source_documents=True,
|
113 |
verbose=False,
|
|
|
115 |
progress(0.9, desc="Concluído!")
|
116 |
return qa_chain
|
117 |
|
118 |
+
# Função para gerar um nome de coleção válido
|
119 |
def create_collection_name(filepath):
|
120 |
collection_name = Path(filepath).stem
|
121 |
+
collection_name = collection_name.replace(" ", "-")
|
122 |
collection_name = unidecode(collection_name)
|
123 |
collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
|
124 |
collection_name = collection_name[:50]
|
|
|
132 |
print('Nome da coleção: ', collection_name)
|
133 |
return collection_name
|
134 |
|
135 |
+
# Função para inicializar o banco de dados
|
136 |
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
|
137 |
list_file_path = [x.name for x in list_file_obj if x is not None]
|
138 |
progress(0.1, desc="Criando nome da coleção...")
|
|
|
144 |
progress(0.9, desc="Concluído!")
|
145 |
return vector_db, collection_name, "Completo!"
|
146 |
|
147 |
+
# Função para inicializar o modelo LLM
|
148 |
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
149 |
llm_name = list_llm[llm_option]
|
150 |
+
print("Nome do LLM: ", llm_name)
|
151 |
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
|
152 |
return qa_chain, "Completo!"
|
153 |
|
154 |
+
# Função para formatar o histórico de conversa
|
155 |
def format_chat_history(message, chat_history):
|
156 |
formatted_chat_history = []
|
157 |
for user_message, bot_message in chat_history:
|
|
|
159 |
formatted_chat_history.append(f"Assistente: {bot_message}")
|
160 |
return formatted_chat_history
|
161 |
|
162 |
+
# Função para realizar a conversa com o chatbot
|
163 |
def conversation(qa_chain, message, history):
|
164 |
formatted_chat_history = format_chat_history(message, history)
|
165 |
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
|
|
|
176 |
new_history = history + [(message, response_answer)]
|
177 |
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
178 |
|
179 |
+
# Função para carregar arquivos
|
180 |
def upload_file(file_obj):
|
181 |
list_file_path = []
|
182 |
for idx, file in enumerate(file_obj):
|
|
|
184 |
list_file_path.append(file_path)
|
185 |
return list_file_path
|
186 |
|
187 |
+
# Interface Gradio
|
188 |
def demo():
|
189 |
with gr.Blocks(theme=gr.themes.Default(primary_hue="blue", secondary_hue="gray")) as demo:
|
190 |
vector_db = gr.State()
|
191 |
qa_chain = gr.State()
|
192 |
collection_name = gr.State()
|
193 |
+
|
194 |
gr.Markdown(
|
195 |
+
"""<center><h2>Chatbot baseado em PDF</center></h2>
|
196 |
+
<h3>Faça perguntas sobre seus documentos PDF</h3>"""
|
197 |
+
)
|
198 |
gr.Markdown(
|
199 |
+
"""<b>Nota:</b> Este assistente AI, usando Langchain e LLMs de código aberto, realiza geração aumentada por recuperação (RAG) a partir de seus documentos PDF. \
|
200 |
+
A interface do usuário explicitamente mostra múltiplos passos para ajudar a entender o fluxo de trabalho do RAG.
|
201 |
+
Este chatbot leva em consideração perguntas anteriores ao gerar respostas (via memória conversacional) e inclui referências de documentos para maior clareza.<br>
|
202 |
+
<br><b>Aviso:</b> Este espaço usa o hardware básico gratuito da Hugging Face. Alguns passos e modelos LLM usados abaixo (endpoints de inferência gratuitos) podem levar algum tempo para gerar uma resposta.
|
203 |
+
"""
|
204 |
+
)
|
205 |
+
|
206 |
with gr.Tab("Passo 1 - Carregar PDF"):
|
207 |
with gr.Row():
|
208 |
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Carregue seus documentos PDF (único ou múltiplos)")
|
209 |
+
|
210 |
with gr.Tab("Passo 2 - Processar documento"):
|
211 |
with gr.Row():
|
212 |
+
db_btn = gr.Radio(["ChromaDB"], label="Tipo de banco de dados vetorial", value="ChromaDB", type="index", info="Escolha seu banco de dados vetorial")
|
213 |
with gr.Accordion("Opções avançadas - Divisor de texto do documento", open=False):
|
214 |
with gr.Row():
|
215 |
+
slider_chunk_size = gr.Slider(minimum=100, maximum=1000, value=600, step=20, label="Tamanho do chunk", info="Tamanho do chunk", interactive=True)
|
216 |
with gr.Row():
|
217 |
+
slider_chunk_overlap = gr.Slider(minimum=10, maximum=200, value=40, step=10, label="Sobreposição do chunk", info="Sobreposição do chunk", interactive=True)
|
218 |
with gr.Row():
|
219 |
db_progress = gr.Textbox(label="Inicialização do banco de dados vetorial", value="Nenhum")
|
220 |
with gr.Row():
|
221 |
db_btn = gr.Button("Gerar banco de dados vetorial")
|
222 |
+
|
223 |
with gr.Tab("Passo 3 - Inicializar cadeia de QA"):
|
224 |
with gr.Row():
|
225 |
+
llm_btn = gr.Radio(list_llm_simple, label="Modelos LLM", value=list_llm_simple[0], type="index", info="Escolha seu modelo LLM")
|
|
|
226 |
with gr.Accordion("Opções avançadas - Modelo LLM", open=False):
|
227 |
with gr.Row():
|
228 |
+
slider_temperature = gr.Slider(minimum=0.01, maximum=1.0, value=0.7, step=0.1, label="Temperatura", info="Temperatura do modelo", interactive=True)
|
229 |
with gr.Row():
|
230 |
+
slider_maxtokens = gr.Slider(minimum=224, maximum=4096, value=1024, step=32, label="Máximo de Tokens", info="Máximo de tokens do modelo", interactive=True)
|
231 |
with gr.Row():
|
232 |
+
slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="Amostras top-k", info="Amostras top-k do modelo", interactive=True)
|
233 |
with gr.Row():
|
234 |
+
llm_progress = gr.Textbox(value="Nenhum", label="Inicialização da cadeia de QA")
|
235 |
with gr.Row():
|
236 |
qachain_btn = gr.Button("Inicializar cadeia de Perguntas e Respostas")
|
237 |
|
|
|
252 |
with gr.Row():
|
253 |
submit_btn = gr.Button("Enviar mensagem")
|
254 |
clear_btn = gr.ClearButton([msg, chatbot], value="Limpar conversa")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
|
256 |
+
# Eventos de pré-processamento
|
257 |
+
db_btn.click(initialize_database, inputs=[document, slider_chunk_size, slider_chunk_overlap], outputs=[vector_db, collection_name, db_progress])
|
258 |
+
qachain_btn.click(initialize_LLM, inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], outputs=[qa_chain, llm_progress]).then(
|
259 |
+
lambda: [None, "", 0, "", 0, "", 0], inputs=None, outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False)
|
260 |
+
|
261 |
+
# Eventos do chatbot
|
262 |
+
msg.submit(conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False)
|
263 |
+
submit_btn.click(conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False)
|
264 |
+
clear_btn.click(lambda: [None, "", 0, "", 0, "", 0], inputs=None, outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False)
|
265 |
+
|
|
|
|
|
|
|
266 |
demo.queue().launch(debug=True)
|
267 |
|
268 |
if __name__ == "__main__":
|