DHEIVER commited on
Commit
b8f9c6f
·
verified ·
1 Parent(s): dc35001

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -8
app.py CHANGED
@@ -194,9 +194,37 @@ footer {
194
  }
195
  """
196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
197
  # Interface Gradio
198
  def demo():
199
- with gr.Blocks(theme=gr.themes.Default(primary_hue="blue", secondary_hue="gray"), css=custom_css) as demo:
200
  # Barra superior personalizada
201
  with gr.Row(visible=True, elem_id="top_bar"):
202
  gr.Image(value="https://huggingface.co/front/assets/huggingface_logo-noborder.svg",
@@ -227,8 +255,6 @@ def demo():
227
  """
228
  )
229
 
230
-
231
-
232
  # Passo 1 - Upload do PDF
233
  with gr.Tab("Passo 1 - Carregar PDF"):
234
  with gr.Row():
@@ -255,7 +281,7 @@ def demo():
255
  # Passo 3 - Configuração da cadeia QA
256
  with gr.Tab("Passo 3 - Inicializar cadeia de QA"):
257
  with gr.Row():
258
- llm_btn = gr.Radio(list_llm_simple, label="Modelos LLM", value=list_llm_simple[0],
259
  type="index", info="Escolha seu modelo LLM")
260
  with gr.Accordion("Opções avançadas - Modelo LLM", open=False):
261
  with gr.Row():
@@ -295,13 +321,13 @@ def demo():
295
  process_btn.click(
296
  initialize_database,
297
  inputs=[document, slider_chunk_size, slider_chunk_overlap],
298
- outputs=[vector_db, collection_name, db_progress]
299
  )
300
 
301
  qa_init_btn.click(
302
  initialize_LLM,
303
- inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db],
304
- outputs=[qa_chain, llm_progress]
305
  ).then(
306
  lambda: [None, "", 0, "", 0, "", 0],
307
  inputs=None,
@@ -334,4 +360,4 @@ def demo():
334
  demo.queue().launch(debug=True)
335
 
336
  if __name__ == "__main__":
337
- demo()
 
194
  }
195
  """
196
 
197
+ import gradio as gr
198
+
199
+ # Funções fictícias para os eventos
200
+ def initialize_database(document, chunk_size, chunk_overlap):
201
+ # Lógica para inicializar o banco de dados vetorial
202
+ vector_db = "Banco de Dados Vetorial Inicializado"
203
+ collection_name = "Coleção 1"
204
+ db_progress = "Banco de Dados Inicializado"
205
+ return vector_db, collection_name, db_progress
206
+
207
+ def initialize_LLM(llm_model, temperature, max_tokens, top_k, vector_db):
208
+ # Lógica para inicializar a cadeia LLM
209
+ qa_chain = "Cadeia de QA Inicializada"
210
+ llm_progress = "Cadeia LLM Inicializada"
211
+ return qa_chain, llm_progress
212
+
213
+ def conversation(qa_chain, message, chatbot):
214
+ # Lógica de processamento de mensagem do chatbot
215
+ response = f"Resposta para: {message}"
216
+ doc_source1 = "Fonte 1"
217
+ source1_page = 1
218
+ doc_source2 = "Fonte 2"
219
+ source2_page = 2
220
+ doc_source3 = "Fonte 3"
221
+ source3_page = 3
222
+ chatbot.append((message, response))
223
+ return qa_chain, message, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page
224
+
225
  # Interface Gradio
226
  def demo():
227
+ with gr.Blocks(theme=gr.themes.Default(primary_hue="blue", secondary_hue="gray"), css=None) as demo:
228
  # Barra superior personalizada
229
  with gr.Row(visible=True, elem_id="top_bar"):
230
  gr.Image(value="https://huggingface.co/front/assets/huggingface_logo-noborder.svg",
 
255
  """
256
  )
257
 
 
 
258
  # Passo 1 - Upload do PDF
259
  with gr.Tab("Passo 1 - Carregar PDF"):
260
  with gr.Row():
 
281
  # Passo 3 - Configuração da cadeia QA
282
  with gr.Tab("Passo 3 - Inicializar cadeia de QA"):
283
  with gr.Row():
284
+ llm_btn = gr.Radio(["Model 1", "Model 2"], label="Modelos LLM", value="Model 1",
285
  type="index", info="Escolha seu modelo LLM")
286
  with gr.Accordion("Opções avançadas - Modelo LLM", open=False):
287
  with gr.Row():
 
321
  process_btn.click(
322
  initialize_database,
323
  inputs=[document, slider_chunk_size, slider_chunk_overlap],
324
+ outputs=[db_progress]
325
  )
326
 
327
  qa_init_btn.click(
328
  initialize_LLM,
329
+ inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, db_progress],
330
+ outputs=[llm_progress]
331
  ).then(
332
  lambda: [None, "", 0, "", 0, "", 0],
333
  inputs=None,
 
360
  demo.queue().launch(debug=True)
361
 
362
  if __name__ == "__main__":
363
+ demo()