DHEIVER's picture
Update app.py
982fa65
raw
history blame
1.62 kB
import gradio as gr
import tensorflow as tf
import numpy as np
models = [
{"name": "my_model_2.h5", "size": 512},
{"name": "my_model.h5", "size": 224},
]
def preprocess_image(image):
temp_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
temp_file.write(image.read())
temp_file.close()
return temp_file.name
def classify_image(image_path, model_name):
model_config = next(m for m in models if m["name"] == model_name)
model = tf.keras.models.load_model(model_name)
image = Image.open(image_path).convert("RGB")
image = image.resize((model_config["size"], model_config["size"]))
image = np.array(image) / 255.0
input_image = np.expand_dims(image, axis=0)
prediction = model.predict(input_image).flatten()
if len(prediction) > 1:
probability = 100 * np.exp(prediction[0]) / (np.exp(prediction[0]) + np.exp(prediction[1]))
else:
probability = round(100. / (1 + np.exp(-prediction[0])), 2)
if probability > 45:
label = "Glaucoma"
elif probability > 25:
label = "Unclear"
else:
label = "Not glaucoma"
return label, probability
inputs = [
gr.inputs.Image(shape=(224, 224), label="Eye image"),
gr.inputs.Dropdown(choices=[m["name"] for m in models], label="Model"),
]
outputs = [
gr.outputs.Textbox(label="Predicted label"),
gr.outputs.Textbox(label="Probability of glaucoma (0-100)"),
]
examples = [
[np.zeros((224, 224, 3)), "my_model.h5"],
[np.ones((224, 224, 3)) * 255, "my_model_2.h5"],
]
gr.Interface(classify_image, inputs, outputs, examples=examples).launch()